理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/tornadomeet/p/3258122.html 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络. Dropout是指在模型训练时随机让网络某些…
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) 模型选择 验证数据集(validation data set),又叫验证集(validation set),指用于模型选择的在train set和test set之外预留的一小部分数据集 若训练数据不够时,预留验证集也是一种luxury.常采用的方法为K折交叉验证.原理为:把train set分割成k个不重合…
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张俊林 你所不知道的事 179 人赞了该文章 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很…
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很多NLP的任务的最好性能,有些任务还被刷爆了,这个才是关键.另外一点是Bert具备广泛的通用性,就是说绝大部分NLP任务都可以采用类似的两阶段模式直接去提升效果,这…
除了前面介绍的权重衰减以外,深度学习模型常常使用丢弃法(dropout)来应对过拟合问题. 方法与原理 为了确保测试模型的确定性,丢弃法的使用只发生在训练模型时,并非测试模型时.当神经网络中的某一层使用丢弃法时,该层的神经元将有一定概率被丢弃掉. 设丢弃概率为 \(p\).具体来说,该层任一神经元在应用激活函数后,有 \(p\) 的概率自乘 0,有 \(1−p\) 的概率自除以 \(1−p\) 做拉伸.丢弃概率是丢弃法的超参数. 多层感知机中,隐层节点的输出: \[h_i = \phi(x_1…
本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26 新智元 1新智元编译   来源:ThingsExpo.Medium 作者:Natalia Ponomareva.Gokula Krishnan Santhanam 整理&编译:刘小芹.李静怡.胡祥杰 新智元日前宣布,获6家顶级机构总额达数千万元的PreA轮融资,蓝驰创投领投,红杉资本中国基金.高瓴智…
丢弃法是一种降低过拟合的方法,具体过程是在神经网络传播的过程中,随机"沉默"一些节点.这个行为让模型过度贴合训练集的难度更高. 添加丢弃层后,训练速度明显上升,在同样的轮数下测试集的精度提高.如果不加入丢弃层,练习一百多轮也只有0.90左右的测试集正确率.…
零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程. 1.通用文本分类技术UTC介绍 本项目提供基于通用文本分类 UTC(Universal Text Classification) 模型微调的文本分类端到端应用方案,打通数据标注-模型训练-模型调优-预测部署全流程,可快速实现文本分类产品落地. 文本分类是一种重要的自然语言处理任务,它可以帮助我们将大量的文本数据进行有效的分类和归纳.实际上,在日常生活中,我们也经常会用到文本分类技术.例如,我们可以…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…
目录 卷积层的dropout 全连接层的dropout Dropout的反向传播 Dropout的反向传播举例 参考资料 在训练过程中,Dropout会让输出中的每个值以概率keep_prob变为原来的1/keep_prob倍,以概率1-keep_prob变为0.也就是在每一轮的训练中让一些神经元随机失活,从而让每一个神经元都有机会得到更高效的学习,会让网络更加健壮,减小过拟合. 在预测过程中,不再随机失活,也不在扩大神经元的输出. 卷积层的dropout 举例:以一个2*4的二维张量为例,参数…