bagging方法(自举汇聚法 bootstrap aggregating) boosting分类:最流行的是AdaBoost(adaptive boosting) 随机森林(random forest) GBDT-Gradient Boost Decision Tree(MART) 迭代决策树入门 统计学习方法——CART, Bagging, Random Forest, Boosting [Machine Learning & Algorithm] 随机森林(Random Forest) 机…
本杂记摘录自文章<开发 | 为什么说集成学习模型是金融风控新的杀手锏?> 基本内容与分类见上述思维导图. . . 一.机器学习元算法 随机森林:决策树+bagging=随机森林 梯度提升树:决策树Boosting=GBDT . 1.随机森林 博客: R语言︱决策树族--随机森林算法 随机森林的原理是基于原始样本随机抽样获取子集,在此之上训练基于决策树的基学习器,然后对基学习器的结果求平均值,最终得到预测值. 随机抽样的方法常用的有放回抽样的booststrap,也有不放回的抽样.RF的基学习器…
第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见. 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想. 集成方法: 投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法 再学习(boosting): 是基于…
零. Introduction 1.learn over a subset of data choose the subset uniformally randomly (均匀随机地选择子集) apply some learning algorithm 解决第一个问题 :Boosting 算法 不再随机选择样本,而是选择the samples we are not good at? 寻找算法解决我们当下不知道如何解决的问题--学习的意义 baic idea behind boosting : f…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' #使用 scikit-learn 自带的一个糖尿病病人的数据集 diabetes = datasets.load_di…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_classification(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 digits 数据集 digits=datasets.load_d…
集成学习里面在不知道g的情况下边学习边融合有两大派:Bagging和Boosting,每一派都有其代表性算法,这里给出一个大纲. 先来说下Bagging和Boosting之间的相同点:都是不知道g,和blending的区别在于blending手里有已知的g,所以需要边学习g边融合.都需要先做bootstrap,然后再投票. 先来说下Bagging和Boosting之间的区别:bagging methods work best with strong and complex models (e.g…
引言   神经网络模型,特别是深度神经网络模型,自AlexNet在Imagenet Challenge 2012上的一鸣惊人,无疑是Machine Learning Research上最靓的仔,各种进展和突破层出不穷,科学家工程师人人都爱它.   机器学习研究发展至今,除了神经网络模型这种方法路径外,还存在许多大相径庭的方法路径,比如说贝叶斯算法.遗传算法.支持向量机等,这些经典算法在许多场景上也一直沿用.本文介绍的树模型,也是一种非常经典的机器学习算法,在推荐系统上经常能看到它的身影.   那…
一.集成学习法 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好).集成学习就是组合这里的多个弱监督模型以期得到一个更好更全面的强监督模型,集成学习潜在的思想是即便某一个弱分类器得到了错误的预测,其他的弱分类器也可以将错误纠正回来. 集成方法是将几种机器学习技术组合成一个预测模型的元算法,以达到减小方差(bagging).偏差(boosting)或改进预测(sta…
前言 前面的文章中介绍了决策树以及其它一些算法,但是,会发现,有时候使用使用这些算法并不能达到特别好的效果.于是乎就有了集成学习(Ensemble Learning),通过构建多个学习器一起结合来完成具体的学习任务.这篇文章将介绍集成学习,以及其中的一种算法 AdaBoost. 集成学习 首先先来介绍下什么是集成学习: 构建多个学习器一起结合来完成具体的学习任务,常可获得比单一学习器显著优越的泛化性能,对"弱学习器" 尤为明显(三个臭皮匠,顶个诸葛亮) 也称为Multi-Classif…