Spark 机器学习 ---Word2Vec】的更多相关文章

package Spark_MLlib import org.apache.spark.ml.feature.Word2Vec import org.apache.spark.sql.SparkSession object 特征抽取_Word2Vec { val spark=SparkSession.builder().master("local").appName("Word2Vec").getOrCreate() import spark.implicits._…
Spark机器学习 自然语言处理(NLP,Natural Language Processing) 提取特征 建模 机器学习 TF-IDF(词频 term frequency–逆向文件频率 inverse document frequency) 短语加权:根据词频,为单词赋予权值 特征哈希:使用哈希方程对特征赋予向量下标 0 运行环境 tar xfvz 20news-bydate.tar.gz export SPARK_HOME=/Users/erichan/Garden/spark-1.5.1…
Spark机器学习库中包含了两种实现方式,一种是spark.mllib,这种是基础的API,基于RDDs之上构建,另一种是spark.ml,这种是higher-level API,基于DataFrames之上构建,spark.ml使用起来比较方便和灵活. Spark机器学习中关于特征处理的API主要包含三个方面:特征提取.特征转换与特征选择.本文通过例子介绍和学习Spark.ml中提供的关于特征处理的API. 特征提取(Feature Extractors) 1.  TF-IDF (Hashin…
Spark机器学习 1 在线学习 模型随着接收的新消息,不断更新自己:而不是像离线训练一次次重新训练. 2 Spark Streaming 离散化流(DStream) 输入源:Akka actors.消息队列.Flume.Kafka.-- http://spark.apache.org/docs/latest/streaming-programming-guide.html 类群(lineage):应用到RDD上的转换算子和执行算子的集合 3 MLib+Streaming应用 3.0 build…
Spark机器学习 Day2 快速理解机器学习 有两个问题: 机器学习到底是什么. 大数据机器学习到底是什么. 机器学习到底是什么 人正常思维的过程是根据历史经验得出一定的规律,然后在当前情况下根据这种规律来预测当前的情况下该怎么做,这种过程就是一个机器学习的过程. 我们可以发现,这个过程里有规律和当前的情况.规律就是模型,当前情况就是当前的数据,会根据当前的情况会根据不同的规律来得出不同的结论来驱动下一个行为,就是数据驱动的一种决策方式,这和我们编程用的指令驱动方式是完全不同的. 机器学习是根…
Spark机器学习 Day1 机器学习概述 今天主要讨论个问题:Spark机器学习的本质是什么,其内部构成到底是什么. 简单来说,机器学习是数据+算法. 数据 在Spark中做机器学习,肯定有数据来源,在Spark的最底层肯定是RDD封装,这个和Spark具体是什么版本没有任何关系,版本发展只不过是提供了更多高层的API而已,例如DataFrame.Dataset等,而之所以有DataFrame.Dataset,一般情况下是为了使用统一的优化引擎(抽象程度越高,优化算法和空间越大). RDD有一…
Spark机器学习库现支持两种接口的API:RDD-based和DataFrame-based,Spark官方网站上说,RDD-based APIs在2.0后进入维护模式,主要的机器学习API是spark-ml包中的DataFrame-based API,并将在3.0后完全移除RDD-based API. 在学习了两周Spark MLlib后,准备转向DataFrame-based接口.由于现有的文档资料均是RDD-based接口,于是便去看了看Spark MLlib的源码.DataFrame-…
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相似度的定义 1.2 分类 1.在基于用户的方法的中,如果两个用户表现出相似的偏好(即对相同物品的偏好大体相同),那就认为他们的兴趣类似.要对他们中的一个用户推荐一个未知物品, 便可选取若干与其类似的用户并根据他们的喜好计算出对各个物品的综合得分,再以得分来推荐物品.其整体的逻辑是,如果其他用户也偏好某些物品,…
2019-1-18 Spark 机器学习 机器学习 模MLib板 预测 //有视频 后续会补充 1547822490122.jpg 1547822525716.jpg 1547822330358.jpg 1547822508907.jpg // 加空行 图片才会居中显示 否则 靠左显示 --by 凡正(Iamfbz)…
上次我们讲过<Spark机器学习(上)>,本文是Spark机器学习的下部分,请点击回顾上部分,再更好地理解本文. 1.机器学习的常见算法 常见的机器学习算法有:l   构造条件概率:回归分析和统计分类:l   人工神经网络:l   决策树:l   高斯过程回归:l   线性判别分析:l   最近邻居法:l   感知器:l   径向基函数核:l   支持向量机:l   通过再生模型构造概率密度函数:l   最大期望算法:l   graphical model :包括贝叶斯网和 Markov 随机…