HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k天后就算矩阵的k次方.  这样就变成:初始矩阵的^[t1,t2]这个区间内的v[v1][v2]的和.  所以就是二分等比序列求和上场的时候了. 跟HDU 1588 Gauss Fibonacci的算法一样. 代码: /* * Author: illuz <iilluzen[at]gmail.com>…
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出k,b,n,M,问( f(g(0)) + f(g(1)) + ... + f(g(n)) ) % M的值. 分析:  把斐波那契的矩阵带进去,会发现这个是个等比序列. 推倒: S(g(i)) = F(b) + F(b+k) + F(b+2k) + .... + F(b+nk) // 设 A = {1…
Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 27    Accepted Submission(s): 5 Problem Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a ve…
题目链接 题意:g(x) = k * x + b.f(x) 为Fibonacci数列.求f(g(x)),从x = 1到n的数字之和sum.并对m取模. 思路:  设A = |(1, 1),(1, 0)|  sum = f(b) + f(k + b) + f(2k + b)...+f((n-1)k + b) (f(x) 为Fibonacci数列)  sum = A^b + A^(k + b) + A^(2k + b)...+ A^((n-1)k + b)  sum = A^b(1 + A^k +…
题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如以下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #i…
Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. " How good an opportunity that Gardon can not give up! The "Prob…
题目的大意就是求等差数列对应的Fibonacci数值的和,容易知道Fibonacci对应的矩阵为[1,1,1,0],因为题目中f[0]=0,f[1]=1,所以推出最后结果f[n]=(A^n-1).a,所以 f(g(i))= f(k*i+b)= (A^(k*i+b-1)).a,i从 0取到 n-1,取出公因式 A^(b-1)(因为矩阵满足分配率),然后所求结果可化为 A^(b-1) * (A^0 + A^k + A^2k +....+ A^(n-1)k),化到这里后难点就是求和了,一开始我尝试暴力…
题目大意: 求出斐波那契中的 第 k*i+b 项的和. 思路分析: 定义斐波那契数列的矩阵 f(n)为斐波那契第n项 F(n) = f(n+1) f(n) 那么能够知道矩阵 A = 1 1 1  0 使得 F(n) = A * F(n+1) 然后我们化简最后的答案 sum = F(b) +   F(K+b) +  F (2*k +b).... sum = F(b) +  A^k F(b)    +   A^2k F(b)..... sum = (E+A^k + A^2k.....)*F(b) 那…
题目地址:HDU 2604 这题仅仅要推出公式来,构造矩阵就非常easy了.问题是推不出公式来..TAT.. 从递推的思路考虑.用f(n)表示n个人满足条件的结果.假设最后一个是m则前n-1人能够随意排列,有f(n-1)种:假设是f,则考虑后两位mf和ff,没有一定满足或者一定不满足的状态,所以继续考虑一位,考虑后三位mmf, fmf, mff, fff,当中fmf和fff不符合条件.假设是mmf,则前n-3种能够随意排列,有f(n-3)种.假设是mff.则继续往前考虑一位.假设是fmff不符合…
题目地址:HDU 2604 Queuing 题意:  略 分析: 易推出:   f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] + f[i-3] + f[i-4] */ #include<cstdio> #include<cstring> using namespace std; const int N = 4; int L, M; struct mtx { int x[N+1][N+1]; mtx(){ me…