luogu 4720 【模板】扩展卢卡斯】的更多相关文章

题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+exgcd求逆元+质因数分解+crt合并答案+求阶乘,跟卢卡斯定理没什么关系...... 如果把模数p分解成p1^k1*p2^k2*...*px^kx的形式,那么我们可以求出c(n,m)分别模每个pi^ki的结果,再用中国剩余定理合并即可. 每个pi^ki一定是互质的,所以用朴素crt就行. 根据组合…
LINK:P5410 模板 扩展 KMP Z 函数 画了10min学习了一下. 不算很难 思想就是利用前面的最长匹配来更新后面的东西. 复杂度是线性的 如果不要求线性可能直接上SA更舒服一点? 不管了 反正这个知识点填过了.. code //#include<bits/stdc++.h> #include<iostream> #include<cstdio> #include<ctime> #include<cctype> #include<…
扩展卢卡斯定理 : https://www.luogu.org/problemnew/show/P4720 卢卡斯定理:https://www.luogu.org/problemnew/show/P3807 卢卡斯模板 #include<bits/stdc++.h> using namespace std; typedef long long ll; const int N =1e5; ll n, m, p, fac[N]; void init() { int i; fac[] =; ; i…
P4720 [模板]扩展卢卡斯 题目背景 这是一道模板题. 题目描述 求 C(n,m)%P 其中 C 为组合数. 输入输出格式 输入格式: 一行三个整数 n,m,p ,含义由题所述. 输出格式: 一行一个整数,表示答案. 输入输出样例 输入样例#1: 5 3 3 输出样例#1: 1 输入样例#2: 666 233 123456 输出样例#2: 61728 说明 1≤m≤n≤1018,2≤p≤1000000 ,不保证 p 是质数. sol:ExLucas模板 可以做P不是质数的组合数 具体方法简单…
扩展卢卡斯定理 最近光做模板了 想了解卢卡斯定理的去这里,那题也有我的题解 然而这题和卢卡斯定理并没有太大关系(雾 但是,首先要会的是中国剩余定理和exgcd 卢卡斯定理用于求\(n,m\)大,但模数\(p\)是质数,且较小的情况 但这题\(p\)并不保证是质数 所以,首先可以通过唯一分解定理给\(p\)分解乘若干质数相乘的形式:\(p=\prod p_i^{r_i}\),当然\(r\)数列是分解后每个质数的指数 则我们可以对于每个\(p_i^{r_i}\),求出\(\tbinom{n}{m}…
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\),质数 \(p\),有: \(C_m^n\equiv \prod\limits_{i=0}^kC_{m_i}^{n^i}(\bmod\ p)\) 其中 \(m=m_kp^k+...+m_1p+m_0\),\(n=n_kp^k+...+n_1p+n_0\).(其实就是 \(n,m\) 的 \(p\) 进…
好吧学长说是板子...学了之后才发现就是板子qwq 题意:求$ C_n^{w_1}*C_{n-w_1}^{w_2}*C_{n-w_1-w_2}^{w_3}*...\space mod \space P$ 当然,如果$\Sigma w_i >n$,则无解. (不会扩展卢卡斯?) #include<cstdio> #include<iostream> #define ll long long #define R register ll using namespace std; i…
快速阶乘与(扩展)卢卡斯定理 \(p\)为质数时 考虑 \(n!~mod~p\) 的性质 当\(n>>p\)时,不妨将\(n!\)中的因子\(p\)提出来 \(n!\) 可以写成 \(a*p^e\) , \(a\)与\(p\)互质 如何求解\(a\)和\(e\)? 显然,\(e=n/p+n/p^2+n/p^3+--\) 因为\(1\)~\(n\)有\(n/p\)个\(p\)的倍数,贡献为\(1\),\(n/p^2\)个\(p^2\)的倍数,贡献为\(2\)-- 事实上,可以每次先将\(1\)~…
扩展卢卡斯定理 求 \(C_n^m \bmod{p}\),其中 \(C\) 为组合数. \(1≤m≤n≤10^{18},2≤p≤1000000\) ,不保证 \(p\) 是质数. Fading的题解 设 \[ p=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k} \] 求出 \[ \left\{\begin{align*} C_n^m & \mod & {p_1^{\alpha_1}} \\ C_n^m & \mod & {…
扩展卢卡斯定理用于求如下式子(其中\(p\)不一定是质数): \[C_n^m\ mod\ p\] 我们将这个问题由总体到局部地分为三个层次解决. 层次一:原问题 首先对\(p\)进行质因数分解: \[p=\prod_i p_i^{k_i} \] 显然\(p_i^{k_i}\)是两两互质的,所以如果分别求出\(C_n^m\ mod\ p_i^{k_i}\),就可以构造出若干个形如\(C_n^m=a_i\ mod\ p_i^{k_i}\)的方程,然后用中国剩余定理即可求解. 层次二:组合数模质数幂…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) ,总之就是在 n 个里取 w[1] 个,剩下的里面再取 w[2] 个,再在剩下的里面取... 这里的模数 P 一看就不是质数啊!大组合数对合数取模,就要用到扩展卢卡斯定理了: 关于扩展卢卡斯定理,可以看这篇博客:https://blog.csdn.net/clove_unique/article/de…
VS自定义项目模板:[2]创建VSIX项目模板扩展 听语音 | 浏览:1237 | 更新:2015-01-02 09:21 | 标签:软件开发 1 2 3 4 5 6 7 分步阅读 一键约师傅 百度师傅高质屏和好师傅,拯救你的碎屏机 在新建项目后,需要添加一些通用的类文件或者引用,那么把其放在自定义模板中,创建自定义模板项目后就包含了这些类文件和引用,省去了一系列的操作,节约了开发时间. 上篇经验介绍如何导出模板做为自定义项目模板,这篇经验介绍如何将导出的自定义项目打包成VSIX扩展,方便部署到…
题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输出格式 输入格式: 第一行一个整数\(T(T≤10)\),表示数据组数 第二行开始共\(T\)行,每行三个数\(n m p\),意义如上 输出格式: 共\(T\)行,每行一个整数表示答案. 输入输出样例 输入样例#1: 2 1 2 5 2 1 5 输出样例#1: 3 3 题解 卢卡斯定理模板题 卢卡…
题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人 ,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某 个人在这两种方案中收到的礼物不同).由于方案数可能会很大,你只需要输出模P后的结果. 输入 输入的第一行包含一个正整数P,表示模: 第二行包含两个整整数n和m,分别表示小E从商…
卢卡斯定理 求\(C_m^n~mod~p\) 设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cdots+{b_k}^{p_k}\) 则\(C_m^n\equiv\prod{C_{a_i}^{b_i}}(mod~p)\) 扩展卢卡斯定理 好像这也不是什么定理,只是一个计算方法 计算\(C_m^n~mod~p\),其中\(p={p_1}^{q_1}\times{p_2}^{q_2}\times\c…
[luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和 操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z 操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和 输入输出格式 输入格式: 第一行包含4个正整数…
P3807 [模板]卢卡斯定理 求 \(C_{m + n}^{m} \% p\) ( \(1\le n,m,p\le 10^5\) ) 错误日志: 数组开小(哇啊啊啊洼地hi阿偶我姑父阿贺佛奥UFO爱我帮你) Pre 好的我们继续恶补数学 首先复习一下 \(O(N)\) 求质数逆元的方法\[inv[1] = 1\]\[inv[i] = (p - p / i) * inv[p \% i] \% p (i >= 2)\] LL inv[maxn]; void get_inv(LL n){ inv[1…
Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 \(a\) 的左侧,于是可以用这个方法判断是否弹点. 写的时候注意细节:确定原点时的比较和排序时的比较是不同的,并且排序时不要把原点加入. #include<bits/stdc++.h> using namespace std; #define ll long long #define mp ma…
Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long long b,long long &x,long long &y) { if(a==0&&b==0)return -1;//无最大公约数 if(b==0){x=1;y=0;return a;} long long d=extend_gcd(b,a%b,y,x); y-=a/b…
P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm​ mod p 保证P为prime C表示组合数. 一个测试点内包含多组数据. 输入输出格式 输入格式: 第一行一个整数T(T\le 10T≤10),表示数据组数 第二行开始共T行,每行三个数n m p,意义如上 输出格式: 共T行,每行一个整数表示答案. 输入输出样例 输入样例#1: 复制 2 1…
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ p$ $lucas$定理: $C_{n}^{m}=C_{n\%p}^{m\%p}\times C_{n/p}^{m/p}\mod p$ 相当于把$n,m$写成$p$进制数($A_1,A_2\dotso A_k$),($B_1,B_2\dotso B_k$) $C_{n}^{m}=C_{A_1}^{…
luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cmath> #include<cstring> #include<iomanip> #include<algorithm> #include<ctime> #include<queue> #inc…
引子 求 \[C_n^m\ \text{mod}\ p \] 不保证 \(p\) 是质数. 正文 对于传统的 Lucas 定理,必须要求 \(p\) 是质数才行.若 \(p\) 不一定是质数,则需要扩展 Lucas 定理 前置知识 扩展欧几里得和中国剩余定理. 算法内容 将 \(p\) 用唯一分解定理分解,即 \[p=\prod p_i^{c_i} \] 若求出了 \[{n\choose m}\ \text{mod}\ p_i^{c_i} \] 就可以用中国剩余定理合并答案了.那么此时我们要求的…
题目大意: 求$C_n^m \mod p$,p不一定为质数 思路: 首先可以将$p$分解为$p1^{a1}*p2^{a2}*...*pk^{ak}$,对于这些部分可以使用$CRT$合并 对于每个$p_i^{k_i}$,阶乘是存在循环的例如$19!$与模数$9$ $1*2*4*5*7*8$与$10*11*13*14*16*17$对答案的贡献一样,因此可以快速幂 对于剩下的部分因为很少可以暴力 对于求阶乘的部分 用这种方法求出循环节和剩余部分然后继续递归即可 求$C$的时候$C_n^m \mod p…
思路 扩展Lucas和Lucas定理其实没什么关系 我们要求的是这样的一个问题 \[ \left(\begin{matrix}n\\m\end{matrix}\right) mod\ P \] p不一定是素数 所以需要CRT合并 问题转化为 \[ x\equiv \left(\begin{matrix}n\\m\end{matrix}\right) (mod\ p_1^{k_1}) \\ x\equiv \left(\begin{matrix}n\\m\end{matrix}\right) (m…
Description 给定n,m,p(1≤n,m,p≤10​^5​​) 求 C_{n+m}^{m} \mod p 保证P为prime C表示组合数. 一个测试点内包含多组数据. Input 第一行一个整数T(T≤10),表示数据组数 第二行开始共T行,每行三个数n m p,意义如上 Output 共T行,每行一个整数表示答案. Sample Input 2 1 2 5 2 1 5 Sample Output 3 3 题解 $Lucas$定理. 就是$C^m _n \mod p = C^{m/p…
求 C(n,n+m)%p C(m,n)%p=C(m%p,n%p)*C(m/p,n/p) #include<cstdio> #include<cstring> #include<iostream> #define N 4000010 using namespace std; #define int long long int jc[N],inv[N],p; inline int ksm(int x,int y,int mod){ int ans=1; while(y){…
在上一篇MVC开发T4代码生成之一----文本模板基础中介绍了与T4模板相关的基础知识,并对MVC内使用T4模板添加视图做了介绍.知道了T4模板的使用后自然就想着怎么对vs自带的T4模板进行扩展,添加一些我们自定义的T4模板.有两种途径可以对vs的T4模板进行扩展: a.直接在vs模板目录内(C:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\IDE\Extensions\Microsoft\Web\Mvc\Scaffoldin…
很不错的学习链接:https://blog.csdn.net/v_july_v/article/details/7041827 具体思路就看上面的链接就行了,这里只放几个常用的模板 问题描述: 给出字符串a和b,求a中匹配b的所有下标 ; int Next[maxn]; void Getnext(char* p)//next数组初始化 { int plen = strlen(p); Next[] = -; , j = ; )//next优化 j < plen也可以,只是多求了next[plen]…
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) 表示组合数. 一个测试点内包含多组数据. 输入输出格式 输入格式: 第一行一个整数 \(T( T\le 10 )\),表示数据组数 第二行开始共 \(T\) 行,每行三个数 \(n,m,p\),意义如上 输出格式: 共T行,每行一个整数表示答案. 输入输出样例 输入样例#1: 2 1 2 5 2 1…