【HIHOCODER1527 】 快速乘法】的更多相关文章

Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body an…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数的个数. 题目思路: [中国剩余定理][容斥原理][快速乘法][数论] 因为都是素数所以两两互素,满足中国剩余定理的条件. 把7加到素数中,a=0,这样就变成解n+1个同余方程的通解(最小解).之后算L~R中有多少解. 但是由于中国剩余定理的条件是同时成立的,而题目是或的关系,所以要用容斥原理叠加删…
尽管快速幂与快速乘法好像扯不上什么关系,但是东西不是很多,就一起整理到这里吧 快速幂思想就是将ax看作x个a相乘,用now记录当前答案,然后将指数每次除以2,然后将当前答案平方,如果x的2进制最后一位为1的话,就将答案乘以现在的数.快速乘法类似,只是将a*x看作x个a相加. 代码 #include<cstdio> #include<iostream> using namespace std; int mi(int a,int x) { ; ;x>>=,now=now*n…
Description 传送门 Solution 由于这里带了小数,直接计算显然会爆掉,我们要想办法去掉小数. 而由于原题给了暗示:b2<=d<=(b+1)2,我们猜测可以利用$(\frac{b-\sqrt{d}}{2})^{n}$的范围为(-1,1)的性质. 则$ans=((\frac{b+\sqrt{d}}{2})^{n}+(\frac{b-\sqrt{d}}{2})^{n})-(\frac{b-\sqrt{d}}{2})^{n}$. 易得第一个括号里的式子不包含小数(强行组合数算一下就发…
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩阵快速乘法 一.整数运算:(快速乘法.快速幂) 先说明一下基本的数学常识: (a*b) mod c == ( (a mod c) * (b mod c) ) mod c //这最后一个mod c 是为了保证结果不超过c 对于2进制,2n可用1后接n个0来表示.对于8进制,可用公式 i+3*j ==…
在实际应用中为了防止数据爆出,在计算a*b%m和x^n%m时,可以采用此方法.在数论中有以下结论: a*b%m=((a%m)*(b*m))%m ; (a+b)%m=(a%m+b%m)%m ; _int64 Plus(_int64 a, _int64 b,_int64 m) { //计算a*b%m _int64 res = ; ) { ) res=(res+a)%m; a = (a << ) % m; b >>= ; } return res; } _int64 Power(_int…
地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Description When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had be…
传送门 zhx's contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 575    Accepted Submission(s): 181 Problem Description As one of the most powerful brushes, zhx is required to give his juniors…
作为史上最强的刷子之一,zhx的老师让他给学弟(mei)们出n道题.zhx认为第i道题的难度就是i.他想要让这些题目排列起来很漂亮. zhx认为一个漂亮的序列{ai}下列两个条件均需满足. 1:a1..ai是单调递减或者单调递增的. 2:ai..an是单调递减或者单调递增的. 他想你告诉他有多少种排列是漂亮的.因为答案很大,所以只需要输出答案模p之后的值. Input Multiply test cases(less than 10001000). Seek EOF as the end of…
描述 在写代码时,我们经常要用到类似 x × a 这样的语句( a 是常数).众所周知,计算机进行乘法运算是非常慢的,所以我们需要用一些加法.减法和左移的组合来实现乘一个常数这个操作.具体来讲, 我们要把 x × a 替换成:(x<<a0) op1 (x<<a1) op2 (x<<a2) ... opn (x<<an) 这样的形式,其中opi 是+或者-. 举个例子:x × 15 = (x<<4) - (x<<0). 在本题中,假设左…
LINK 题意:求满足模p下$\frac{1}{a_i+a_j}\equiv\frac{1}{a_i}+\frac{1}{a_j}$的对数,其中$n,p(1\leq n\leq10^5,2\leq p\leq10^{18})$ 思路:推式子,两边同乘$(a_i + a_j)^3$,得$a_i^2+a_j^2 \equiv {a_i·a_j} \mod{p}$,进一步$a_i^2+a_j^2+a_i·a_j\equiv {0} \mod{p}$,然后?然后会点初中数竞,或者数感好会因式分解就能看出…
这题的题解和我写的有一拼,异常简洁,爆炸. 这题思路dp 表示的是讨论到第位,并比原数的前n位多了 显然j只能取0,1,毕竟2进制嘛 之后转移就好了,注意下面两个重要状态 #include <cstdio> #include <cstring> #include <vector> #include <iostream> #include <queue> using namespace std; const int N = 1e6+5; const…
#include<bits/stdc++.h> using namespace std; ; char a[N]; int main() { scanf(); ); ,r = n; ') l++; && a[r] == ') r--; ,d = ; ;i >= l;i--) ') u = min(u,d)+; else d = min(u,d)+; printf(-); ; }…
时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 在写代码时,我们经常要用到类似 x × a 这样的语句( a 是常数).众所周知,计算机进行乘法运算是非常慢的,所以我们需要用一些加法.减法和左移的组合来实现乘一个常数这个操作.具体来讲, 我们要把 x × a 替换成:(x<<a0) op1 (x<<a1) op2 (x<<a2) ... opn (x<<an) 这样的形式,其中opi 是+或者-. 举个例子:x × 15 = (…
关于快速幂这个算法,已经不想多说,很早也就会了这个算法,但是原来一直靠着模板云里雾里的,最近重新学习,发现忽视了一个重要的问题,就是若取模的数大于int型,即若为__int64的时候应该怎么办,这样就得用到乘法快速幂+乘方快速幂了. 快速幂一般是为了解决乘方取模问题的,显然思想就是二分,下面贴上快速幂模板: __int64 mulpow(__int64 a,__int64 p,__int64 m) { __int64 ans = ; while(p) { ) ans = ans * a % m;…
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些细节,比如快速幂时ans矩阵的初始化方式,快速幂的次数,矩阵乘法过程中对临时矩阵的清零,最后输出结果时的初始矩阵...矩阵快速幂好理解但是细节还是有点小坑的.. 下面就是满满的槽点,,高能慎入!!! 对于这个题目要求矩阵过程中对m取模,结果对g取模,我表示难以接受,,上来没看清题直接wa19个点,另…
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较久远了所以就不是那么的难了 这是一个非常裸的矩阵乘法,一般矩阵乘法就是矩阵+快速幂 只是这道题在矩阵乘法的时候单纯的乘法会溢出,所以还要用到快速乘法 网上也有说用long double黑科技的,虽然我不是很懂那个东东 构造矩阵 单位矩阵a,c 0,1 答案矩阵   Xi-1 1 我的这个矩阵构造可能…
以前我在判断素数上一直只会 sqrt(n) 复杂度的方法和所谓的试除法(预处理出sqrt(n)以内的素数,再用它们来除). (当然筛选法对于判断一个数是否是素数复杂度太高) 现在我发现其实还有一种方法叫做费马小定理. 有关请见 http://baike.baidu.com/link?url=1BurQrmJP3j9QiD4OnA2X3TAbSSCPvTgbaqbo6qSQPVSuXLjVe-lL2SNi6N5wblwJFrIJs41pmDbCZ6z9je4h_ 代码如下: llg ch(llg…
快速幂形式 public static int f(int a,int b,int c){ int ans =1; int base=a; while(b!=0){ if((b&1)!=0) ans=(ans*base)%c; base=(base*base)%c; } return ans; } 快速乘法幂(优化) 幂转换成乘法,乘法转化成加法 public static int f(int a,int b,int c){ int ans = 0; int base=a; while(b!=0…
标题:斐波那契 斐波那契数列大家都非常熟悉.它的定义是: f(x) = 1 .... (x=1,2) f(x) = f(x-1) + f(x-2) .... (x>2) 对于给定的整数 n 和 m,我们希望求出: f(1) + f(2) + ... + f(n) 的值.但这个值可能非常大,所以我们把它对 f(m) 取模. 公式参见[图1.png] 但这个数字依然很大,所以需要再对 mod 求模. [数据格式] 输入为一行用空格分开的整数 n m mod (0 < n, m, mod <…