线性判别分析(LDA)】的更多相关文章

本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪…
在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题模型.本文只讨论线性判别分析,因此后面所有的LDA均指线性判别分析. 线性判别分析 LDA: linear discriminant analysis 一.LDA思想:类间小,类间大 (‘高内聚,松耦合’) LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的,这点和PCA不同…
基于sklearn的线性判别分析(LDA)代码实现 一.前言及回顾 本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA).在上一篇LDA线性判别分析原理及python应用(葡萄酒案例分析),我们通过详细的步骤理解LDA内部逻辑实现原理,能够更好地掌握线性判别分析的内部机制.当然,在以后项目数据处理,我们有更高效的实现方法,这篇将记录学习基于sklearn进行LDA数据降维,提高编码速度,而且会感觉更加简单. LDA详细介绍与各步骤实现请看上回:LDA线性判别分析原理及p…
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结.LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理. 在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),…
1 Linear Discriminant Analysis    相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然这些在实际中不一定满足,但是LDA被证明是非常有效的降维方法,其线性模型对于噪音的鲁棒性效果比较好,不容易过拟合. 2 二分类问题    原理小结:对于二分类LDA问题,简单点来说,是将带有类别标签的高维样本投影到一个向量w(一维空间)上,使得在该向量上样本的投影值达到类内距离最小.类内间距离最大(…
点到判决面的距离 点\(x_0\)到决策面\(g(x)= w^Tx+w_0\)的距离:\(r={g(x)\over \|w\|}\) 广义线性判别函数 因任何非线性函数都可以通过级数展开转化为多项式函数(逼近),所以任何非线性判别函数都可以转化为广义线性判别函数. Fisher LDA(线性判别分析) Fisher准则的基本原理 找到一个最合适的投影轴,使两类样本在该轴上投影之间的距离尽可能远,而每一类样本的投影尽可能紧凑,从而使两类分类效果为最佳. 分类:将 d 维分类问题转化为一维分类问题后…
前言在之前的一篇博客机器学习中的数学(7)——PCA的数学原理中深入讲解了,PCA的数学原理.谈到PCA就不得不谈LDA,他们就像是一对孪生兄弟,总是被人们放在一起学习,比较.这这篇博客中我们就来谈谈LDA模型.由于水平有限,积累还不够,有不足之处还望指点.下面就进入正题吧. 为什么要用LDA前面的博客提到PCA是常用的有效的数据降维的方法,与之相同的是LDA也是一种将数据降维的方法.PCA已经是一种表现很好的数据降维的方法,那为什么还要有LDA呢?下面我们就来回答这个问题? PCA是一种无监督…
主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本数据进行中心化处理 求样本协方差矩阵 对协方差矩阵进行特征分解,将特征值从大到小排列 取特征值前d大对应的特征向量\(w_1, w_2, \cdots, w_d\),通过以下变换将n维样本映射到d维 \[x^{'}_i = \begin{bmatrix} w_1^{T}x_i \\ w_2^Tx_i…
准则 采用一种分类形式后,就要采用准则来衡量分类的效果,最好的结果一般出现在准则函数的极值点上,因此将分类器的设计问题转化为求准则函数极值问题,即求准则函数的参数,如线性分类器中的权值向量. 分类器设计准则:FIsher准则.感知机准则.最小二乘(最小均方误差)准则 Fisher准则 Fisher线性判别分析LDA(Linearity Distinction Analysis)基本思想:对于两个类别线性分类的问题,选择合适的阈值,使得Fisher准则函数达到极值的向量作为最佳投影方向,与投影方向…
线性判别分析LDA详解 1 Linear Discriminant Analysis    相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然这些在实际中不一定满足,但是LDA被证明是非常有效的降维方法,其线性模型对于噪音的鲁棒性效果比较好,不容易过拟合. 2 二分类问题    原理小结:对于二分类LDA问题,简单点来说,是将带有类别标签的高维样本投影到一个向量w(一维空间)上,使得在该向量上样本的投影值达到类内距…