HDU 4635】的更多相关文章

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来就是强连通图,输出-1即可: 思路:最后得到的图肯定分为两部分x和y,且两部分均为强连通分量,要么x的点到y的所有点有边,要么,从y的所有点到x的所有点有边:(其中只有入度或出度为0的点才可能成为x或y) 则有         x+y=n  答案为 ans = y*(y-1) + x*(x-1)+…
今天又爆零了,又是又,怎么又是又,爆零爆多了,又也就经常挂嘴边了,看到这句话,你一定很想说一句””,弱菜被骂傻,也很正常啦. 如果你不开心,可以考虑往下看. 翻到E(HDU 4635 Strongly connected)题,这么短的题目,肯定要先看啦.然后D(LightOJ 1229),然后C(ZOJ 2243),然后F(HDU 4711),然后B(CodeForces 385D),然后看A(HDU 3889)好吧,我承认,A题看了一眼就不看了,B题一看是线段什么有点几何的味道就果断放弃,然后…
Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 4635 Description Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can…
题目链接:HDU  4635 题目大意: 给你一个有向图,加有向边,使得这个图是简单有向图.问你最多加多少条有向边. 简单有向图: 1.不存在有向重边. 2.不存在图循环.(注意是不存在 “图” 循环,就是不能使整个图成为 “强连通图” .意思是可以存在环,但不能是全图循环.同样,两个点之间可以有两条相反有向边.) 分析: 1.如果我要加最多的边,全图仍然不为 “强连通图” .那么最多的情况就是,有两个巨大的环,他们之前有且仅有一条有向边.故先进行 “有向图缩点” ,先从 小环 开始分析. 2.…
http://acm.hdu.edu.cn/showproblem.php?pid=4635 我们把缩点后的新图(实际编码中可以不建新图 只是为了概念上好理解)中的每一个点都赋一个值 表示是由多少个点缩成的 我们需要找所有端点 也可能出发点(只有出度) 也可能是结束点 (只有入度) 这个端点和外界(其它所有点)的联通性是单向的(只入或只出) 也可能没有联通 在保持这个端点与外界的单向联通性的情况下 任意加边 所以 当端点的值越小(包含点越少) 结果越优 代码: #include<iostream…
http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给出n个点和m条边,问最多能添加几条边使得图不是一个强连通图.如果一开始强连通就-1.思路:把图分成x个强连通分量之后,每个强连通分量最大的边数是n*(n-1),然后考虑和其他强连通分量相连的情况:即把分量a的所有点都连向分量b的所有点,而b不连a,这样就可以让图不是强连通的.可以把整个图分成两个强连通分量a和b分别有i和j个点,其中i+j=n,那么答案就是n*(n-1)-m-i*j.所以求出最小…
http://acm.hdu.edu.cn/showproblem.php?pid=4635 问:最多加多少条边,使得原图不是强连通图 正向考虑有困难,不妨反向思考,既最少去掉几条边使得原图不是强连通. 总边数sum=n*(n-1)时肯定是强连通,已经给了m条边,sum-=m 这时把已经强连通的部分进行缩点,对于缩好的点我们把他们分成两部分,保证其中一部分到另一部分没有边(这两部分不强连通),再把sum减去两部分能构成所有的边数,取最大值即为答案 具体做时枚举每个小强连通块,找到num[i]*(…
考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是simple directed graph,即 无重边且整个图非强连通. 容易想到把所有的点分成两个集合,只要在同一个方向上把所有边都连上就很理想.那么点该如何分配呢?差值尽可能的大,因为总的边数不单单是两集合之间的边,还要算上集合内部全部的边,注意集合内部是在保证不出现重边的条件下的所有的边. 令总点…
题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部中每个点到Y部的每个点都有一条边,假设X部有x个点,Y部有y个点,有x+y=n,同时边数F=x*y+x*(x-1)+y*(y-1),整理得:F=N*N-N-x*y,当x+y为定值时,二者越接近,x…
思路:想用Tarjan算法进行缩点,并记录每个连通分支的点数.缩点完毕过后,找出所有出度或入度为0的连通分量,假设该连通分量的点数为num[i],那么 ans=Max(ans,(n-num-1)*(n-num)+(num-1)*num+(n-num)*num-m): #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #define Maxn 100010 #de…
题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提下,要添加尽可能多的边.边至多有n*(n-1)条,而已经给了m条,那么所能添加的边数不可能超过k=n*(n-1)-m. 这k条边还有部分不能添加,一添加立刻就强连通.一个强连通图最少只需要n条边,根据强连通的特性,缩点之后必定是不会有环的存在的,那么只要继续保持没有环的存在即可.我们只要让其中1个强…
t这道题在我们队属于我的范畴,最终因为最后一个环节想错了,也没搞出来 题解是这么说的: 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部中每个点到Y部的每个点都有一条边,假设X部有x个点,Y部有y个点,有x+y=n,同时边数F=x*y+x*(x-1)+y*(y-1),整理得:F=N*N-N-x*y,当x+y为定值时,二者越接近,x*y越大,所以要使得边数最多,那么X部和Y部的点数的个数差距就要越大,…
做完后,看了解题报告,思路是一样的.我就直接粘过来吧 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部中每个点到Y部的每个点都有一条边,假设X部有x个点,Y部有y个点,有x+y=n,同时边数F=x*y+x*(x-1)+y*(y-1),整理得:F=N*N-N-x*y,当x+y为定值时,二者越接近,x*y越大,所以要使得边数最多,那么X部和Y部的点数的个数差距就要越大,所以首先对于给定的有向图缩点,对于…
我还有什么好说,还有什么好说...... 我是SBSBSBSBSBSBSBSBSBSBSBSBBSBSBSBSBSBSBSBSBS........................ 题意 思路什么的都不写了...........我只是为了记录一下我是SBSBSBSBSBBSBSBSBSBSBSBSBSBSBB 以后不要再SBSBSBSBSBSBSBSBSBBSBSBSBSBSBSBSBBSBSBSBBSBSBSBBSBSBSBSBSBBSBSBSBSBBSBSBSBSB /************…
题意:给你一个图,问最多能添加多少条边使图仍为不是强连通图,如果原图是强连通输出 ‘-1’ 分析:先把求出连通分量进行缩点,因为是求最多的添加边,所以可以看成两部分 x,y,只能一部分向另外一部分连边,内部的就是完全图,所以是x*(x+1)+x*y+y*(y+1)-M,只需要求出来出度或者入度为0的最少点的那个连通分量即可. ********************************************************************** #include<stdio.…
题意:给一个n个顶点m条弧的简单有向图(无环无重边),求最多能够加入多少条弧使得加入后的有向图仍为简单有向图且不是一个强连通图.假设给的简单有向图本来就是强连通图,那么输出-1. 分析: 1.用tarjan算法求出强连通分量的个数,假设个数为1,那么输出-1,结束,否则运行2 2.如果将一些强连通分量合并为有n1个顶点简单全然图1,而将剩下的强连通分量合并为n2个顶点的简单全然图2,跨这两个简单全然图的弧的方向仅仅能是单向的,如果m1为全然图1内部的弧的数量,m2为为全然图2内部的弧的数量.m3…
题目链接 给一个有向图, 问你最多可以加多少条边, 使得加完边后的图不是一个强连通图. 只做过加多少条边变成强连通的, 一下子就懵逼了 我们可以反过来想. 最后的图不是强连通, 那么我们一定可以将它分成两部分, 两部分中, 每一部分都是一个强连通分量. 然后两部分连接的情况一定是一部分的每个点向另一部分的每个点连边, 而没有反向边. 这样才能保证边数最多并且不是强连通. 我们设一部分点数为x, 另一部分为y. 那么显然x+y == n. 总点数为 x*(x-1) + y*(y-1)+xy. 前两…
题意:给出一个图,如果这个图一开始就不是强连通图,求出最多加多少条边使这个图还能保持非强连通图的性质. 思路:不难想到缩点转化为完全图,然后找把它变成非强连通图需要去掉多少条边,但是应该怎么处理呢……有人给出这样的答案,找到分量中点数最少的块,把它的所有入边都去掉……好像是对的,但是万一这个块本来就有一个入度怎么办?这个边是不可以删的啊.所以我觉得这种办法是有点的问题的,所以最靠谱的方法还是斌哥他们给出的方法,最后的时候把点分成两个集合x和y,x和y本身都是完全图块,然后让x中的每一个点都指向y…
<题目链接> 题目大意: 给你一张有向图,问在保证该图不能成为强连通图的条件下,最多能够添加几条有向边. 解题分析: 我们从反面思考,在该图是一张有向完全图的情况下,最少删去几条边能够使其不是强连通图.即,开始的时候,图的总边树为 n*(n-1),减去m条已有的边.然后把原图中所有的强连通块进行缩点,对于缩好的点,我们把其分成两部分,保证这两部分点不能够相互可达(即这两部分不是强连通),所以我们要减去一个部分到另一部分的所有同一方向的边,比如将连通块1到连通块2的所有边都删除,这样,这两部分点…
找出强联通块,计算每个连通块内的点数.将点数最少的那个连通块单独拿出来,其余的连通块合并成一个连通分量. 那么假设第一个连通块的 点数是 x  第二个连通块的点数是 y 一个强连通图(每两个点之间,至少存在一条课互相到达的路径)的边数为n*(n-1) 一个连通图的边数至少为n*(n-1)- x*y + 1 则非连通图最多的边数为n*(n-1)- x*y 即 x*(x-1)+ y*(y-1)+ x*y 因为原图中已经有m条边 所以最多加 x*(x-1)+ y*(y-1)+ x*y - m 条边 这…
Strongly connected Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submission(s) : 1   Accepted Submission(s) : 1 Font: Times New Roman | Verdana | Georgia Font Size: ← → Problem Description Give a simple direct…
题目链接:https://cn.vjudge.net/contest/67418#problem/G 具体思路:首先用tarjan缩点,这个时候就会有很多个缩点,然后再选取一个含有点数最少,并且当前这个点的出度和入度至少有一个为0,这个原因后面解释.然后选出最少的点 t1 后,当前的图就可以看成两个“缩点”了,除了选出来的t1点,其他点可以形成一个联通块,然后这两个缩点之间可以连着单向边,这样的话能加的边数是最多的.关于为什么选取最小的出度或者入度为0的缩点,就在于两个联通块相连的时候,只能连单…
Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 53    Accepted Submission(s): 15 Problem Description Give a simple directed graph with N nodes and M edges. Please tell me the…
Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1828    Accepted Submission(s): 752 Problem Description Give a simple directed graph with N nodes and M edges. Please tell me…
好久没写tarjan了,写起来有点手生,还好1A了- -. 题意:给定一个有向图,问最多添加多少条边,让它依然不是强连通图. 分析:不妨考虑最大时候的临界状态(即再添加一条边就是强连通图的状态),假设这时候的边的数量是F,那么答案就是F-m(m是一开始边的数量).因此,F越大,答案越大.那么,怎么考虑F的值呢?最后的状态一定是这样的:整个图不是强连通的,但是他的两个分部x和y都是强连通的,并且其中任意一个分量(不妨设其为x),到另外一个分量(y),x中的每一个点到y中的每一个点都有边,而且,y中…
题目链接:https://vjudge.net/problem/HDU-4635 题目:有向图,给定若干个连通图,求最多还能添加几条边,添完边后,图仍然要满足 (1)是简单图,即没有重边或者自环 (2)不是有向强连通图 思路:我们可以这么想,n个顶点,一个有向图边数最多,就是有向完全图,则边数为n*(n-1). 要满足不是强连通图,我们可以假设有一个tarjan缩成的点(scc),它不能到达其他所有点,或者其他所有点 不能到达它,假设这个scc有k个顶点,也就是说,k*(n-k)条边是不存在的,…
1 //题意: 2 //给你一个有向图,如果这个图是一个强连通图那就直接输出-1 3 //否则,你就要找出来你最多能添加多少条边,在保证添加边之后的图依然不是一个强连通图的前提下 4 //然后输出你最多能添加的边的数目 5 // 6 //题解: 7 //1.判断是否是强连通图你可以看一下有几个点的low[x]==dfn[x],如果只有一个,那这个图就是一个强连通图 8 //2. 9 //假如我们有两个子图,我们可以让这两个子图中每一个图内都连上有向边(把子图内部连成完全图).然后再在这两个子图之…
    ID Origin Title   76 / 163 Problem A POJ 1236 Network of Schools   59 / 177 Problem B UVA 315 Network   49 / 151 Problem C UVA 796 Critical Links   28 / 109 Problem D POJ 3694 Network   39 / 98 Problem E POJ 3177 Redundant Paths   33 / 230 Proble…
KUANGBIN带你飞 全专题整理 https://www.cnblogs.com/slzk/articles/7402292.html 专题一 简单搜索 POJ 1321 棋盘问题    //2019.3.18 POJ 2251 Dungeon Master POJ 3278 Catch That Cow  //4.8 POJ 3279 Fliptile POJ 1426 Find The Multiple  //4.8 POJ 3126 Prime Path POJ 3087 Shuffle…
没有写题解.补一波 Network of Schools 问题1:求有向图中入度为0的点个数 问题2:使得整个图变成一个联通分量 问题1直接缩点统计 问题2=max(入度为0的点,出度为0的点),注意原始图是一个联通分量的情况 Network 统计割点的个数. 割点的两种情况 Critical Links 统计有向图桥的数量 有向图桥在树枝边是判断一下 Network 往无向图的边中增加边,同时输出此时桥的数量 缩点后,进行暴力的并查集 void link(int x,int y) { int…