Spark的核心RDD (Resilient Distributed Datasets弹性分布式数据集)  原文链接:http://www.cnblogs.com/yjd_hycf_space/p/7681585.html 铺垫 在hadoop中一个独立的计算,例如在一个迭代过程中,除可复制的文件系统(HDFS)外没有提供其他存储的概念,这就导致在网络上进行数据复制而增加了大量的消耗,而对于两个的MapReduce作业之间数据共享只有一个办法,就是将其写到一个稳定的外部存储系统,如分布式文件系统…
本篇文章主要剖析BlockManager相关的类以及总结Spark底层存储体系. 总述 先看 BlockManager相关类之间的关系如下: 我们从NettyRpcEnv 开始,做一下简单说明. NettyRpcEnv是Spark 的默认的RpcEnv实现,它提供了个Spark 集群各个节点的底层通信环境,可以参照文章 spark 源码分析之十二--Spark RPC剖析之Spark RPC总结 做深入了解. MemoryManager 主要负责Spark内存管理,可以参照 spark 源码分析…
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> <深入理解Spark:核心思想与源码分析>一书第二章的内容请看链接<第2章 SPARK设计理念与基本架构> 由于本书的第3章内容较多,所以打算分别开辟四篇随笔分别展现. <深入理解Spark:核心思想与源码分析>一…
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售,欢迎感兴趣的同学购买.我开始研究源码时的Spark版本是1.2.0,经过7个多月的研究和出版社近4个月的流程,Spark自身的版本迭代也很快,如今最新已经是1.6.0.目前市面上另外2本源码研究的Spark书籍的版本分别是0.9.0版本和1.2.0版本,看来这些书的作者都与我一样,遇到了这种问题.由于研究和…
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> 本文主要展示本书的第2章内容: Spark设计理念与基本架构 “若夫乘天地之正,而御六气之辩,以游无穷者,彼且恶乎待哉?” ——<庄子·逍遥游> n  本章导读: 上一章,介绍了Spark环境的搭建,为方便读者学习Spark做好准备.本章…
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售,欢迎感兴趣的同学购买.我开始研究源码时的Spark版本是1.2.0,经过7个多月的研究和出版社近4个月的流程,Spark自身的版本迭代也很快,如今最新已经是1.6.0.目前市面上另外2本源码研究的Spark书籍的版本分别是0.9.0版本和1.2.0版本,看来这些书的作者都与我一样,遇到了这种问题.由于研究和…
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售,欢迎感兴趣的同学购买.我开始研究源码时的Spark版本是1.2.0,经过7个多月的研究和出版社近4个月的流程,Spark自身的版本迭代也很快,如今最新已经是1.6.0.目前市面上另外2本源码研究的Spark书籍的版本分别是0.9.0版本和1.2.0版本,看来这些书的作者都与我一样,遇到了这种问题.由于研究和…
收录待用,修改转载已取得腾讯云授权 作者 | 蒋专 蒋专,现CDG事业群社交与效果广告部微信广告中心业务逻辑组员工,负责广告系统后台开发,2012年上海同济大学软件学院本科毕业,曾在百度凤巢工作三年,2016年入职微信广告中心. 导语 spark 已经成为广告.报表以及推荐系统等大数据计算场景中首选系统,因效率高,易用以及通用性越来越得到大家的青睐,我自己最近半年在接触spark以及spark streaming之后,对spark技术的使用有一些自己的经验积累以及心得体会,在此分享给大家. 本文…
Spark系列-初体验(数据准备篇) Spark系列-核心概念 一. Spark核心概念 Master,也就是架构图中的Cluster Manager.Spark的Master和Workder节点分别Hadoop的NameNode和DataNode相似,是一种主从结构.Master是集群的领导者,负责协调和管理集群内的所有资源(接收调度和向WorkerNode发送指令).从大类上来分Master分为local和cluster两大类 local:也就是本地模式,所有计算都在一台服务器上完成,通常用…
Spark Streaming核心概念与编程 1. 核心概念 StreamingContext Create StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new SparkConf().setAppName(appName).setMaster(master) //Second(1) #表示处理的批次, 当前1秒处理一次 val ssc = new Stream…
Application:spark应用程序,就是用户基于spark api开发的程序,一定是通过一个有main方法的类执行的,比如java开发spark,就是在eclipse中,建立的一个工程 Application Jar:这个就是把写好的spark工程,打包成一个jar包,其中包括了所有的第三方jar依赖包,比如java中,就用maven+assembly插件打包最方便 Driver Program:就是运行程序中main方法的进程,这就是driver,也叫driver进程 Cluster…
这一章要讲Spark Streaming,讲之前首先回顾下它的用法,具体用法请参照<Spark Streaming编程指南>. Example代码分析 val ssc = )); // 获得一个DStream负责连接 监听端口:地址 val lines = ssc.socketTextStream(serverIP, serverPort); // 对每一行数据执行Split操作 val words = lines.flatMap(_.split(" ")); // 统计w…
Spark 编程指南 概述 Spark 依赖 初始化 Spark 使用 Shell 弹性分布式数据集 (RDDs) 并行集合 外部 Datasets(数据集) RDD 操作 基础 传递 Functions(函数)给 Spark 理解闭包 示例 Local(本地)vs. cluster(集群)模式 打印 RDD 的 elements 与 Key-Value Pairs 一起使用 Transformations(转换) Actions(动作) Shuffle 操作 Background(幕后) 性能…
本课主题 打通 Spark 系统运行内幕机制循环流程 引言 通过 DAGScheduelr 面向整个 Job,然后划分成不同的 Stage,Stage 是從后往前划分的,执行的时候是從前往后执行的,每个 Stage 内部有一系列任務,前面有分享過,任务是并行计算啦,这是并行计算的逻辑是完全相同的,只不过是处理的数据不同而已,DAGScheduler 会以 TaskSet 的方式把我们一个 DAG 构造的 Stage 中的所有任务提交给底层的调度器 TaskScheduler,TaskSchedu…
本課主題 Sorted-Based Shuffle 的诞生和介绍 Shuffle 中六大令人费解的问题 Sorted-Based Shuffle 的排序和源码鉴赏 Shuffle 在运行时的内存管理 引言 在历史的发展中,为什么 Spark 最终还是选择放弃了 HashShuffle 而使用了 Sorted-Based Shuffle,而且作为后起之秀的 Tungsten-based Shuffle 它到底在什么样的背景下产生的.Tungsten-Sort Shuffle 已经并入了 Sorte…
本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所…
本课主题 Static MemoryManager 的源码鉴赏 Unified MemoryManager 的源码鉴赏 引言 从源码的角度了解 Spark 内存管理是怎么设计的,从而知道应该配置那个参数让程序运行更适合你的实际需要,我们为什么要把 Spark Memory 这块内存调大,原因很简单,理论上讲你调得愈来,你占用的空间愈大,程序运行时所产生的 IO 就会愈来愈少,理论可以参考第四章 : Spark 中 JVM 内存使用及配置内幕详情.这一章是对于理论的源码补充!希望这篇文章能为读者带…
一.分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 二.为什么要进行分区 数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变…
转载:http://www.cnblogs.com/jcchoiling/p/6494652.html 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所以掌握Spark对JVM的内存使用内幕是至关重要的.很多人对 Spark 的印象是:它是基于内存的,而且可以缓存一大堆数据…
一.简介 1.1 多数据源支持 Spark支持以下六个核心数据源,同时Spark社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JDBC/ODBC connections Plain-text files 注:以下所有测试文件均可从本仓库的resources目录进行下载 1.2 读数据格式 所有读取API遵循以下调用格式: // 格式 DataFrameReader.format(...).option("key", &qu…
本篇文章主要剖析Spark的内存管理体系. 在上篇文章 spark 源码分析之十四 -- broadcast 是如何实现的?中对存储相关的内容没有做过多的剖析,下面计划先剖析Spark的内存机制,进而进入内存存储,最后再剖析磁盘存储.本篇文章主要剖析内存管理机制. 整体介绍 Spark内存管理相关类都在 spark core 模块的 org.apache.spark.memory 包下. 文档对这个包的解释和说明如下: This package implements Spark's memory…
导入 从一个Job运行过程中来看DAGScheduler是运行在Driver端的,其工作流程如下图: 图中涉及到的词汇概念: 1. RDD——Resillient Distributed Dataset 弹性分布式数据集. 2. Operation——作用于RDD的各种操作分为transformation和action. 3. Job——作业,一个JOB包含多个RDD及作用于相应RDD上的各种operation. 4. Stage——一个作业分为多个阶段. 5. Partition——数据分区,…
Spark与Hadoop的对比   Scala是Spark的主要编程语言,但Spark还支持Java.Python.R作为编程语言 Hadoop的编程语言是Java    …
分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 为什么要进行分区 数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变小文件,…
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel…
背景: 接到任务,需要在一个一天数据量在460亿条记录的hive表中,筛选出某些host为特定的值时才解析该条记录的http_content中的经纬度: 解析规则譬如: 需要解析host: api.map.baidu.com 需要解析的规则:"result":{"location":{"lng":120.25088311933617,"lat":30.310684375444877}, "confidence&quo…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .编译Spark .时间不一样,SBT是白天编译,Maven是深夜进行的,获取依赖包速度不同 2.maven下载大文件是多线程进行,而SBT是单进程),Maven编译成功前后花了3.4个小时. 1.1 编译Spark(SBT) 1.1.1 安装git并编译安装 1.  从如下地址下载git安装包 http://www.onlinedown.net/softdown/169333_2.htm http…
本期内容: 1. Spark Streaming Job架构与运行机制 2. Spark Streaming 容错架构与运行机制 事实上时间是不存在的,是由人的感官系统感觉时间的存在而已,是一种虚幻的存在,任何时候宇宙中的事情一直在发生着的. Spark Streaming好比时间,一直遵循其运行机制和架构在不停的在运行,无论你写多或者少的应用程序都跳不出这个范围. import org.apache.spark.SparkConf import org.apache.spark.streami…
本期内容 : spark streaming另类在线实验 瞬间理解spark streaming本质 一.  我们最开始将从Spark Streaming入手 为何从Spark Streaming切入Spark定制?Spark的子框架已有若干,为何选择Spark Streaming?让我们细细道来. 1.  Spark最开始只有Spark Core,没有目前的这些子框架.这些子框架是构建于Spark Core之上的.没有哪个子框架能摆脱Spark Core.我们通过对一个框架的彻底研究,肯定可以…
由于预处理的数据都存储在cassandra里面,所以想要用spark进行数据分析的话,需要读取cassandra数据,并把分析结果也一并存回到cassandra:因此需要研究一下spark如何读写cassandra. 话说这个单词敲起来好累,说是spark,其实就是看你开发语言是否有对应的driver了. 因为cassandra是datastax主打的,所以该公司也提供了spark的对应的driver了,见这里. 我就参考它的demo,使用scala语言来测试一把. 1.执行代码 //Cassa…