Attention & Transformer】的更多相关文章

Attention & Transformer seq2seq; attention; self-attention; transformer; 1 注意力机制在NLP上的发展 Seq2Seq,Encoder,Decoder 引入Attention,Decoder上对输入的各个词施加不同的注意力 https://wx1.sbimg.cn/2020/09/15/9FZGo.png Self-attention,Transformer,完全基于自注意力机制 Bert,双向Transformer,ma…
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质 1. 前言 谷歌在2017年发表了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译.传统的神经机器翻译大都是利…
Transformer Transformer是NLP的颠覆者,它创造性地用非序列模型来处理序列化的数据,而且还获得了大成功.更重要的是,NLP真的可以"深度"学习了,各种基于transformer的模型层出不穷,如BERT.GPT-2.T-NLG,而且模型参数量呈指数级增长. Transformer之前,大家的思路都是在改进序列模型,从RNN到LSTM.GRU.Seq2Seq.如果你看过我之前写的深入浅出RNN就会知道,序列模型要靠遍历seq_len来处理data,效率低是显而易见的…
1.现状 (1) 模型层数加深 (2) 模型参数量变大 (3) 难以训练 (4) 难以fine-tune 2. 单层参数量和占用内存分析 层 参数设置 参数量与占用内存 1 layer 0.5Billion 0.5Billion * 4Byte = 2GB embedding layer 64K tokens 1024 emb_size 8 batch_size 参数量 64K × 1K × 8 = 0.5B 内存 2GB 3. Transformer 模型内存占用的问题以及Reformer相应…
Awesome-Repositories-for-Text-Modeling repo paper miracleyoo/DPCNN-TextCNN-Pytorch-Inception Deep Pyramid Convolutional Neural Networks for Text Categorization Cheneng/DPCNN Deep Pyramid Convolutional Neural Networks for Text Categorization conv-RNN…
这个github感觉很不错,把一些比较新的实现都尝试了: https://github.com/brightmart/text_classification fastText TextCNN TextRNN RCNN Hierarchical Attention Network seq2seq with attention Transformer("Attend Is All You Need") Dynamic Memory Network EntityNetwork:trackin…
目录 前言 BERT模型概览 Seq2Seq Attention Transformer encoder部分 Decoder部分 BERT Embedding 预训练 文本分类试验 参考文献 前言 在18年末时,NLP各大公众号.新闻媒体都被BERT(<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding>)刷屏了,刷新了自然语言处理11项纪录,也被称为了2018年最强自然语言处理模型.…
论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的创意和效果来看都十分不错   来源:晓飞的算法工程笔记 公众号 论文: Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization 论文地址:https://arxiv.org/abs/1909.…
一.文本特征编码 1. 标量编码 美国:1 中国:2 印度:3 … 朝鲜:197 标量编码问题:美国 + 中国 = 3 = 印度 2. One-hot编码 美国:[1,0,0,0,…,0]中国:[0,1,0,0,…,0]印度:[0,0,1,0,…,0] 美国 + 中国 = [1,1,0,0,…,0],代表拥有美国和中国双重国籍 3. Embedding编码 二.文本序列化表示 1.Tokenization 2.Build Dictionary 3.One-hot encoding 4.Align…
前言 Transfomer是一种encoder-decoder模型,在机器翻译领域主要就是通过encoder-decoder即seq2seq,将源语言(x1, x2 ... xn) 通过编码,再解码的方式映射成(y1, y2 ... ym), 之前的做法是用RNN进行encode-decoder,但是由于RNN在某一时间刻的输入是依赖于上一时间刻的输出,所以RNN不能并行处理,导致效率低效,而Transfomer就避开了RNN,因此encoder-decoder效率高. Transformer…
attention 以google神经机器翻译(NMT)为例 无attention: encoder-decoder在无attention机制时,由encoder将输入序列转化为最后一层输出state向量,再由state向量来循环输出序列每个字符. attention机制: 将整个序列的信息压缩在一维向量里造成信息丢失,并且考虑到输出的某个字符只与输入序列的某个或某几个相关,与其他输入字符不相关或相关性较弱,由此提出了attention机制.在encoder层将输入序列的每个字符output向量…
论文地址:Attention is you need 序列编码 深度学习做NLP的方法,基本都是先将句子分词,然后每个词转化为对应的的词向量序列,每个句子都对应的是一个矩阵\(X=(x_1,x_2,...,x_t)\),其中\(x_i\)都代表着第\(i\)个词向量,维度为d维,故\(x\in R^{n×d}\) 第一个基本的思路是RNN层,递归式进行: \[ y_t=f(y_{t-1},x_t) \] RNN结构本身比较简单,也适合序列建模,但RNN明显缺点之一在于无法并行,因而速度较慢,而且…
https://www.cnblogs.com/rucwxb/p/10277217.html Transformer -- attention is all you need Transformer模型是2018年5月提出的,可以替代传统RNN和CNN的一种新的架构,用来实现机器翻译,论文名称是attention is all you need.无论是RNN还是CNN,在处理NLP任务时都有缺陷.CNN是其先天的卷积操作不很适合序列化的文本,RNN是其没有并行化,很容易超出内存限制(比如50to…
目录: 1. 前提 2. attention (1)为什么使用attention (2)attention的定义以及四种相似度计算方式 (3)attention类型(scaled dot-product attention \ multi-head attention) 3. self-attention (1)self-attention的计算 (2) self-attention如何并行 (3) self-attention的计算总结 (4) self-attention的类型(multi-…
1 Transformer 模型结构处理自然语言序列的模型有 rnn, cnn(textcnn),但是现在介绍一种新的模型,transformer.与RNN不同的是,Transformer直接把一句话当做一个矩阵进行处理,要知道,RNN是把每一个字的Embedding Vector输入进行,隐层节点的信息传递来完成编码的工作.简而言之,Transformer 直接粗暴(后面Attention也就是矩阵的内积运算等). Attention 的编码,把一个输入序列(x1,...,xn) (x_1,.…
过年放了七天假,每年第一件事就是立一个flag——希望今年除了能够将技术学扎实之外,还希望能够将所学能够用来造福社会,好像flag立得有点大了.没关系,套用一句电影台词为自己开脱一下——人没有梦想,和咸鱼有什么区别.闲话至此,进入今天主题:Transformer.谷歌于2017年提出Transformer网络架构,此网络一经推出就引爆学术界.目前,在NLP领域,Transformer模型被认为是比CNN,RNN都要更强的特征提取器. Transformer算法简介 Transformer引入了s…
Transformer 本文介绍了Transformer结构, 是一种encoder-decoder, 用来处理序列问题, 常用在NLP相关问题中. 与传统的专门处理序列问题的encoder-decoder相比, 有以下的特点: 结构完全不依赖于CNN和RNN 完全依赖于self-attention机制, 是一种堆叠的self-attention 使用全连接层 逐点point-wise计算的 整个Transformer的结构图如下所示: Encoder and Decoder Stacks 如上…
目录 Transformer引入 Encoder 详解 输入部分 Embedding 位置嵌入 注意力机制 人类的注意力机制 Attention 计算 多头 Attention 计算 残差及其作用 BatchNorm 和 LayerNorm 前馈神经网络 Decoder 详解 Transformer 最终输出 TRM 面试题讲解 RNN.LSTM.Transformer 三者的区别? 为什么有缩放因子 [公式] ?attention为什么scaled? Decoder端的Mask 如何 mask…
原创作者 | 疯狂的Max 01 背景及动机 Transformer是目前NLP预训练模型的基础模型框架,对Transformer模型结构的改进是当前NLP领域主流的研究方向. Transformer模型结构中每层都包含着残差结构,而残差结构中最原始的结构设计是Post-LN结构,即把Layer Norm (LN) 放在每个子层处理之后,如下图Figure 1(a)所示:而其他的一些预训练模型如GPT-2,则将LN改到每个子层处理之前,被定义为Pre-LN,如下图Figure 1(b),有论文[…
Transformer 最近看了Attention Is All You Need这篇经典论文.论文里有很多地方描述都很模糊,后来是看了参考文献里其他人的源码分析文章才算是打通整个流程.记录一下. Transformer整体结构 数据流梳理 符号含义速查 N: batch size T: 一个句子的长度 E: embedding size C: attention_size(num_units) h: 多头header的数量 1. 训练 1.1 输入数据预处理 翻译前文本,翻译后文本,做长度截断…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
The Evolved Transformer - Enhancing Transformer with Neural Architecture Search 2019-03-26 19:14:33   Paper:"The Evolved Transformer." So, David R., Chen Liang, and Quoc V. Le.  arXiv preprint arXiv:1901.11117 (2019).  Code: https://github.com/t…
目录 引言 动机 解决方案 概览 注释 实现 高效实现 结果 结论 参考文献 本文翻译自How Self-Attention with Relative Position Representations works, 介绍 Google的研究成果. 引言 ​ 本文基于Shaw 等人发表的论文 <Self-Attention with Relative Position Representations> 展开.论文介绍了一种在一个Transformer内部编码输入序列的位置信息的方法.特别的是,…
目录 从宏观上看Transformer 把张量画出来 开始编码! 从宏观上看自注意力 自注意力的细节 自注意力的矩阵计算 "多头"自注意力 用位置编码表示序列的顺序 残差 解码器 最后的线性和Softmax层 损失函数 下一步 本文翻译自Jay Alammar的博文The Illustrated Transformer 注意力是一个有助于提高神经机器翻译模型性能的机制.在这篇文章中,我们将着眼于Transformer--一个利用注意力来提高模型训练速度的模型.Transformer在特…
来源商业新知网,原标题:百闻不如一码!手把手教你用Python搭一个Transformer 与基于RNN的方法相比,Transformer 不需要循环,主要是由Attention 机制组成,因而可以充分利用python的高效线性代数函数库,大量节省训练时间. 可是,文摘菌却经常听到同学抱怨,Transformer学过就忘,总是不得要领. 怎么办?那就自己搭一个Transformer吧! 上图是谷歌提出的transformer 架构,其本质上是一个Encoder-Decoder的结构.把英文句子输…
1 概述 在介绍Transformer模型之前,先来回顾Encoder-Decoder中的Attention.其实质上就是Encoder中隐层输出的加权和,公式如下: 将Attention机制从Encoder-Decoder框架中抽出,进一步抽象化,其本质上如下图 (图片来源:张俊林博客): 以机器翻译为例,我们可以将图中的Key,Value看作是source中的数据,这里的Key和Value是对应的.将图中的Query看作是target中的数据.计算Attention的整个流程大致如下: 1)…
Transformer注解及PyTorch实现 原文:http://nlp.seas.harvard.edu/2018/04/03/attention.html 作者:Alexander Rush 转载自机器之心:https://www.jiqizhixin.com/articles/2018-11-06-10?from=synced&keyword=transformer 在学习的过程中,将代码及排版整理了一下,方便阅读. "Attention is All You Need"…
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质 1. 前言 注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理.语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影.所以,了解注意力机制的工作原理对于关注深度学习技术发…
https://www.jianshu.com/p/25fc600de9fb 谷歌最近的一篇BERT取得了卓越的效果,为了研究BERT的论文,我先找出了<Attention is All You Need>,看看里面的Transformer模型作为基础. Transformer是为了机器翻译任务中的问题所提出的. 传统的RNN神经网络结构是可以处理任意长度的输入,它非常适合于自然语言的建模,所以它在一段时间内占据了整个神经网络中的主流.随着学术的发展,我们也会看到RNN有些不足. RNN的缺点…