前言 之前工作中,有接触到大数据的需求,虽然当时我们体系有专门的大数据部门,但是由于当时我们中台重构,整个体系的开发量巨大,共用一个大数据部门,人手已经忙不过来,没法办,为了赶时间,我自己负责的系统的大数据相关操作,由我们自己承担了.此前对大数据的知识了解的很少,于是晚上回去花时间突击大数据知识,白天就开始上手干,一边学一边做,总算在部门规定的时间,跟系统一起上线了.后来的维护迭代就交给大数据去了,虽然接触大数据的时间不长,但是对我来说,确是很有意思的一段经历,觉得把当时匆匆学的知识点,再仔细回…
前言 接上文,复习整理大数据相关知识点,这章节从MapReduce开始... MapReduce介绍 MapReduce思想在生活中处处可见.或多或少都曾接触过这种思想.MapReduce的思想核心是"分而治之",适用于大量复杂的任务处理场景(大规模数据处理场景). Map负责"分",即把复杂的任务分解为若干个"简单的任务"来并行处理.可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系. Reduce负责"合"…
大数据时代之hadoop(一):hadoop安装 大数据时代之hadoop(二):hadoop脚本解析 大数据时代之hadoop(三):hadoop数据流(生命周期) 大数据时代之hadoop(四):hadoop 分布式文件系统(HDFS) hadoop的核心分为两块,一是分布式存储系统-hdfs,这个我已经在上一章节大致讲了一下,还有一个就是hadoop的计算框架-mapreduce. mapreduce事实上就是一个移动式的基于key-value形式的分布式计算框架. 其计算分为两个阶段,m…
大数据测试之初识Hadoop POPTEST老李认为测试开发工程师是面向测试的开发,也就是说,写代码就是为完成测试任务服务的,写自动化测试(性能自动化,功能自动化,安全自动化,接口自动化等等)的case或者开发测试工具完成不同类型的测试.其实自动化测试涉及面非常之广,目前来讲,case基本都可以写成自动化,而性能测试的脚本开发要围绕业务和协议特点来完成开发,并测试完成后依靠软件分析工具对被测试系统进行评估测试. 未来的技术趋势是云测试,大数据测试,安全性测试,这些要完成测试都需要自动化来完成,而…
一篇了解大数据架构及Hadoop生态圈 阅读建议,有一定基础的阅读顺序为1,2,3,4节,没有基础的阅读顺序为2,3,4,1节. 第一节 集群规划 大数据集群规划(以CDH集群为例),参考链接: https://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_host_allocations.html https://blog.csdn.net/xuefenxi/article/details/81563033 Clou…
大数据技术的发展是一个非常典型的技术工程的发展过程,荣辛通过对于谷歌经典论文的盘点,希望可以帮助工程师们看到技术的探索.选择过程,以及最终历史告诉我们什么是正确的选择. 何为大数据   "大数据"这个名字流行起来到现在,差不多已经有十年时间了.在这十年里,不同的人都按照自己的需要给大数据编出了自己的解释.有些解释很具体,来自于一线写 Java 代码的工程师,说用 Hadoop 处理数据就是大数据:有些解释很高大上,来自于市场上靠发明大词儿为生的演说家,说我们能采集和处理全量的数据就是大…
介绍 此Refcard提供了Apache Hadoop,这是最流行的软件框架,可使用简单的高级编程模型实现大型数据集的分布式存储和处理.我们将介绍Hadoop最重要的概念,描述其架构,指导您如何开始使用它以及在Hadoop上编写和执行各种应用程序. 简而言之,Hadoop是Apache Software Foundation的一个开源项目,可以安装在服务器集群上,以便这些服务器可以通信并协同工作来存储和处理大型数据集.Hadoop近年来因其有效处理大数据的能力而变得非常成功.它允许公司将所有数据…
前言: 好吧我承认已经有四年多没有更新博客了.... 在这四年中发生了很多事情,换了工作,换了工作的方向.在工作的第一年的时候接触机器学习,从那之后的一年非常狂热的学习机器学习的相关技术,也写了一些自己的理解和感悟.今天大概看了一下这个博客的总体阅读人数已经有70多万了,印象中之前还只有十多二十万.很高兴这些文章能够帮助你更好的理解一些机器学习相关的基础知识,非常感谢各位读者和爬虫机器人(:-p)的支持! 后来个人选择将工作的方向从机器学习换到了Hadoop相关领域,中间有很多感悟我想之后再单独…
半个月前看到博客园有人说.NET不行那篇文章,我只想说你们有时间去抱怨不如多写些实在的东西.  1.SQLSERVER优点和缺点? 优点:支持索引.事务.安全性以及容错性高 缺点:数据量达到100万以上就需要开始优化了,一般我们会对 表进行水平拆分,分表.分区和作业同步等,这样做大大提高了逻辑的复杂性,难以维护,只有群集容错,没有多库负载均衡并行计算功能.  2.SQLSERVER真的不能处理大数据? 答案:当然可以的,打个比方:操作单一数据库称为一维操作,如果操作相同结构,分布在多个服务器上的…
Spark与Hadoop对比 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法.其架构如下图所示: Spark与Hadoop对比 S…