为什么使用CNN作为降噪先验?】的更多相关文章

图像恢复的MAP推理公式: $\hat{x}\text{}=\text{}$arg min$_{x}\frac{1}{2}||\textbf{y}\text{}-\text{}\textbf{H}x||^{2}\text{}+\text{}\lambda\Phi(x)$ 正则化项$\Phi(x)$对应恢复的表现扮演了至关重要的角色: $\textbf{z}_{k+1}\text{}=\text{}Denoiser(\textbf{x}_{k+1},\sqrt{\lambda/\mu})$ 然后介…
现有的最优方法在文本.人脸以及低光照图像上的盲图像去模糊效果并不佳,主要受限于图像先验的手工设计属性.本文研究者将图像先验表示为二值分类器,训练 CNN 来分类模糊和清晰图像.实验表明,该图像先验比目前最先进的人工设计先验更具区分性,可实现更广泛场景的盲图像去模糊. 论文:Learning a Discriminative Prior for Blind Image Deblurring(学习用于盲图像去模糊的判别先验) 我们提出了一种基于数据驱动的判别先验的盲图像去模糊方法.我们的工作是基于这…
图像恢复的MAP推理公式: $\hat{x}\text{}=\text{}$arg min$_{x}\frac{1}{2}||\textbf{y}\text{}-\text{}\textbf{H}x||^{2}\text{}+\text{}\lambda\Phi(x)$ 正则化项$\Phi(x)$对应恢复的表现扮演了至关重要的角色: $\textbf{z}_{k+1}\text{}=\text{}Denoiser(\textbf{x}_{k+1},\sqrt{\lambda/\mu})$ 然后介…
CVPR2017的一篇论文 Learning Deep CNN Denoiser Prior for Image Restoration: 一般的,image restoration(IR)任务旨在从观察的退化变量$y$(退化模型,如式子1)中,恢复潜在的干净图像$x$ $y \text{} =\text{}\textbf{H}x\text{}+\text{}v $ where $\textbf{H}$denotes 退化矩阵,$\textbf{v}$denotes 加性高斯白噪声(additi…
一般的,image restoration(IR)任务旨在从观察的退化变量$y$(退化模型,如式子1)中,恢复潜在的干净图像$x$ $y \text{} =\text{}\textbf{H}x\text{}+\text{}v $ where $\textbf{H}$denotes 退化矩阵,$\textbf{v}$denotes 加性高斯白噪声(additive white Gaussian noise) with 标准差$\sigma$ 指定不同的退化矩阵$\textbf{H}$,对应着不同的…
1.摘要 近年来,深度卷积神经网络(CNN)方法在单幅图像超分辨率(SISR)领域取得了非常大的进展.然而现有基于 CNN 的 SISR 方法主要假设低分辨率(LR)图像由高分辨率(HR)图像经过双三次 (bicubic) 降采样得到,因此当真实图像的退化过程不遵循该假设时,其超分辨结果会非常差.此外,现有的方法不能扩展到用单一模型解决多种不同的图像退化类型.为此,提出了一种维度拉伸策略使得单个卷积超分辨率网络能够将 SISR 退化过程的两个关键因素(即模糊核和噪声水平)作为网络输入.归因于此,…
目录 故事背景 空域特征转换 超分辨率网络 发表在2018年CVPR. 摘要 Despite that convolutional neural networks (CNN) have recently demonstrated high-quality reconstruction for single-image super-resolution (SR), recovering natural and realistic texture remains a challenging prob…
这篇论文主要概述了model-baesd的方法在解决图像恢复的逆问题的很好的效果,降噪问题其实就是前向模型的H是一个恒等算子,将state-of-the-art的降噪算法(先验模型)和相对应的逆问题的求解方法结合是一个困难但是具体前景的工作.  作者提出了一个灵活的框架能够允许性能强大的图像系统的前向模型(forword models )去匹配j和结合降噪模型和先验模型(denoising model or prior model),以实现图像恢复. 传统的模型涉及两个部分,一个模型是噪声的估计…
一.ConvNext Highlight 核心宗旨:基于ResNet-50的结构,参考Swin-Transformer的思想进行现代化改造,知道卷机模型超过trans-based方法的SOTA效果. 启发性结论:架构的优劣差异没有想象中的大,在同样的FLOPs下,不同的模型的性能是接近的. 意义:这篇文章可以作为很好的索引,将一些从卷积网络演进过程中的重要成果收录,适合新手. 二.背景介绍(Related Work) 2.1 一句话回顾ResNet-50 由48层卷积 + 1个maxpool +…
学习深度CNN去噪先验用于图像恢复(Learning Deep CNN Denoiser Prior for Image Restoration)-Kai Zhang 代码:https://github.com/cszn/IRCNN 机翻: 基于模型的优化方法和区别的学习方法已经解决各种逆问题的两种主要策略在低级视觉领域.通常情况下,这两种方法有各自的优点和缺点,例如,基于模型的优化方法处理不同的逆问题很灵活,但通常需要花费大量时间和复杂的先验信息来获得良好表现; 同时,基于区别学习方法测试速度…