(本文为原创学习笔记,主要参考<模式识别(第三版)>(张学工著,清华大学出版社出版)) 1.概念 将分类看做决策,进行贝叶斯决策时考虑各类的先验概率和类条件概率,也即后验概率.考虑先验概率意味着对样本总体的认识,考虑类条件概率是对每一类中某个特征出现频率的认识.由此不难发现,贝叶斯决策的理论依据就是贝叶斯公式. 2.理论依据 2.1 最小错误率贝叶斯决策 贝叶斯决策的基本理论依据就是贝叶斯公式(式1),由总体密度P(E).先验概率P(H)和类条件概率P(E|H)计算出后验概率P(H|E),判决…
Fast Coding Unit Size Selection for HEVC based on Bayesian Decision Rule <HEVC标准介绍.HEVC帧间预测论文笔记>系列博客,目录见:http://www.cnblogs.com/DwyaneTalk/p/5711333.html 2012 Picture Coding Symposium May 7-9, 2012 以最小决策代价来进行贝叶斯决策,判断对于当前CU是否进行四叉树划分.代价是RD值,每个块选取3个值作为…
参考: 模式识别与机器学习(一):概率论.决策论.信息论 Decision Theory - Principles and Approaches 英文图书 What are the best beginners books about decision theory? - Quora Statistical Decision Theory 了解一些AI方面的前沿知识!!! 待续~…
粗糙集理论(Rough Set Theory) 一种数据分析处理理论. <粗糙集—关于数据推理的理论>. 数据挖掘(Data Mining)和知识发现(KDD). 集合近似定义的基本思想及其应用和粗糙集合环境下的机器学习基础研究. 在粗糙集中使用信息表(information table) 描述论域中的数据集合.信息表的形式和大家所熟悉的关系数据库中的关系数据模型很相似,是一张二维表格. 数据库(数据挖掘).粗糙集.粗糙集合论.集合A(列表).对象.属性(条件属性,决策属性).论域.知识.知识…
混沌理论(Chaos theory)是关于非线性系统在一定参数条件下展现分岔(bifurcation).周期运动与非周期运动相互纠缠,以至于通向某种非周期有序运动的理论.在耗散系统和保守系统中,混沌运动有不同表现,前者有吸引子,后者无(也称含混吸引子). 从20世纪80年代中期到20世纪末,混沌理论迅速吸引了数学.物理.工程.生态学.经济学.气象学.情报学等诸多领域学者有关注,引发了全球混沌热.混沌,也写作浑沌(比如<庄子>).自然科学中讲的混沌运动指确定性系统中展示的一种类似随机的行为或性态…
已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A).这里先解释什么是条件概率: 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率.其基本求解公式为:. 贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路. 下面不加证明地直接给出贝叶斯定理: 朴素贝叶斯分类的原理与流…
初体验: 概率论为我们提供了一个衡量和控制不确定性的统一的框架,也就是说计算出了一大堆的概率.那么,如何根据这些计算出的概率得到较好的结果,就是决策论要做的事情. 一个例子: 文中举了一个例子: 给定一个X射线图x,目标是如何判断这个病人是否得癌症(C1或C2).我们把它看作是一个二分类问题,根据bayes的概率理论模型,我们可以得到: 因此,就是的先验概率:(假设Ck表示患病,那么就表示普通人患病的概率) 则作为是后验概率. 假设,我们的目标是:在给定一个x的情况下,我们希望最小化误分类的概率…
在讲完最小二乘(linear regression)和K近邻后,进入本节. 引入符号: $X\in R^p$ X为维度为p的输入向量 $Y\in R$ Y为输出,实数 $P(X,Y)$ 为两者的联合概率分布 $f(X)$ 为预测函数,给定X,输出Y a.使用squared error loss(L2)作为损失函数 $L(Y,f(X))={(Y-f(X))}^2$ EPE(excepted prediction error)为 $EPE(f)=E({(Y-f(X))}^2) \\ \ \ =\in…
From: http://www.cnblogs.com/bayesianML/p/6377588.html#central_problem You can do it: Dirichlet Process, HDP, HDP-HMM, IBP, CRM, etc. 本文目录结构如下: 核心主题 中心问题 参数估计 模型比较 非贝叶斯方法 最大似然 正则化 EM算法 基本推断算法 MAP估计 Gibbs采样 马尔科夫链蒙特卡洛(MCMC) 变分推断(Variational inference)…
向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimensional vector:rbind(x1,x2); cbind(x1,x2) > x = c(1,2,3,4,5,6) > y = c(6,5,4,3,2,1) > z = rbind(x,y) > z [,1] [,2] [,3] [,4] [,5] [,6] x 1 2 3 4…
正如我在<2019年总结>里说提到的, 我将开始一系列自然语言处理(NLP)的笔记. 很多人都说, AI并不难啊, 调现有库和云的API就可以啦. 然而实际上并不是这样的. 首先, AI这个领域十分十分大, 而且从1950年图灵提出图灵测试, 1956年达特茅斯会议开始, AI已经发展了五十多年了, 学术界有的认为有六个时期, 有的认为有三起二落. 所以Ai发展到今天, 已经有相当的规模了, 不可能有一个人熟悉AI的所有领域, 最多也就是熟悉相关联的几个领域, 比如NLP和OCR以及知识图谱相…
from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse(http://www.cs.toronto.edu/~rgrosse/) Intended for: beginning machine learning researchers, practitioners Bayesian statistics is a branch of statistics…
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步.一直在积累.一直在提高自己的专业性.两年来,机器之心编译团队整理过翻译词汇对照表「红宝书」,编辑个人也整理过类似的词典.而我们也从机器之心读者留言中发现,有些人工智能专业词汇没有统一的翻译标准,这可能是因地区.跨专业等等原因造成的.举个例子,DeepM…
一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分类任务来说,在所有相关概率都已知的理想情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记结果. 二.贝叶斯决策论的基本原理 我们以多分类任务为例: 假设有N种可能的类别标记,即y={c1,c2,...,cN},λij是将一个真实类别为cj的样本误分类为ci的损失,基于后验概率P(…
Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an algorithm. An algorithm is a sequence of instructions that should be carried out to transform the input to output. For example, one can devise an algori…
虽然openBugs效果不错,但原理是什么呢?需要感性认识,才能得其精髓. Recall [Bayes] prod: M-H: Independence Sampler firstly. 采样法 Recall [ML] How to implement a neural network then.     梯度下降法 And compare them. 梯度下降,其实就是减小loss function,不断逼近拟合的过程. 那采样法呢? y = a*x +sigma,  where sigma~…
注: 本文是对<IPython Interactive Computing and Visualization Cookbook>一书中第七章[Introduction to statistical data analysis in Python – frequentist and Bayesian methods]的简单翻译和整理,这部分内容主要将对统计学习中的频率论方法和贝叶斯统计方法进行介绍. 本文将介绍如何洞察现实世界的数据,以及如何在存在不确定性的情况下做出明智的决定. 统计数据分析…
文件夹 1Bayesian model selection贝叶斯模型选择 1奥卡姆剃刀Occams razor原理 2Computing the marginal likelihood evidence 2-1 BIC approximation to log marginal likelihood 2-2贝叶斯因子 3先验 3-1 确定无信息先验分布的Jeffreys原则 3-2共轭先验Conjugate Priors 4Hierarchical Bayes 5Empirical Bayes…
离去年“马尔可夫链进行彩票预测”已经一年了,同时我也计划了一个彩票数据框架的搭建,分析和预测的框架,会在今年逐步发表,拟定了一个目录,大家有什么样的意见和和问题,可以看看,留言我会在后面的文章中逐步改善:彩票数据框架与分析预测总目录.同时这篇文章也是“[彩票]彩票预测算法(一):离散型马尔可夫链模型C#实现”的兄弟篇.所以这篇文章还有一个标题,应该是:[彩票]彩票预测算法(二):朴素贝叶斯分类器在足球胜平负预测中的应用及C#实现. 以前了解比较多的是SVM,RF,特征选择和聚类分析,实际也做过一…
1.简单例子引入 2.先验概率 3.后验概率 4.最小错误率决策 5.最小风险贝叶斯决策 1. 贝叶斯公式 2简单例子 正常情况下,我们可以快速的将街上的人分成男和女两类.这里街上的人就是我们观测到的样本,将每一个人分成男.女两类就是我们做决策的过程.上面的问题就是一个分类问题. 分类可以看作是一种决策,即我们根据观测对样本做出应归属哪一类的决策. 假定我手里握着一枚硬币,让你猜是多少钱的硬币,这其实就可以看作一个分类决策的问题:你需要从各种可能的硬币中做出一个决策.硬币假设面值有1角.5角.1…
目录 贝叶斯决策 一.贝叶斯决策理论 二.贝叶斯公式 2.1 从条件概率公式推导贝叶斯公式 2.2 从全概率公式推导贝叶斯公式 三.贝叶斯公式应用 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 贝叶斯决策 一.贝叶斯决策理论 贝叶斯决策理论:在不完全情报下,对部分未知的状态用主观概率估计. 二.贝叶斯公式 2.1 从条件概率公式推导贝叶斯公式 若果\(A\)和\(B…
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后的pattern.例如,16世纪的Kepler从他的老师Tycho搜集的大量有关于行星运动的数据中发现了天体运行的规律,并直接导致了牛顿经典力学的诞生.然而,这种依赖于人类经验的.启发式的模式识别过程很难复制到其他的领域中.例如手写数字的识别.这就需要机器学习的技术了.(顺便提一下,开普勒定律在物理…
---恢复内容开始--- ===================================================== A random variable's possible values might represent the possible outcomes of a yet-to-be-performed experiment,  or the possible outcomes of a past experiment whose already-existing va…
Over the last seven years more than 200 quantitative finance articles have been written by members of the QuantStart team, prominent quant finance academics, researchers and industry professionals. 在过去七年中,QuantStart一共发表了200多篇量化金融文章,这些文章的作者包括QS团队成员.优秀…
原文地址:http://blog.sina.com.cn/s/blog_7e5f32ff0102vlgj.html 入门书单 1.<数学之美>PDF6 作者吴军大家都很熟悉.以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用. 2.<Programming Collective Intelligence>(<集体智慧编程>)PDF3 作者Toby Segaran也是<BeautifulData : The Stories Behind Elegant…
1 一个经典例子 ​ 一个经典的例子就是Polynomial Curve Fitting问题,现在将以此为基础介绍一些基本概念和方法.该问题的主要思路是针对给定的训练集\(\mathbf{x}\equiv(x_1,x_2,\cdots,x_N)^T\)与\(\mathbf{t}\equiv(t_1,t_2,\cdots,t_N)^T\),选取适当的模型(在这个问题中是多项式模型)和适当的参数集\(\mathbf{w}=(w_0,x_1,\cdots,w_M)^T\)使得与拟合结果 \[y(x,\…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also…
在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现有的EM算法或者Variational method来学习.通常为了方便推导参数的后验分布,会假设参数的先验分布是似然的某个共轭分布,这样后验分布和先验分布具有相同的形式,这对于建模过程中的数学推导可以大大的简化,保证最后的形式是tractable. 在概率模型中,Dirichlet这个词出现的频率…
离散对数问题,英文是Discrete logarithm Problem,有时候简写为Discrete log,该问题是十几个开放数学问题(Open Problems in Mathematics, [0.a], [0.b])中的一个.为什么要从离散对数问题说起?因为后面的内容中会反复使用到,因此我们希望用独立的一节分析来消除理解上的不确定性. 0x01 背景 对数\(\log_{b}(a)\)是由John Napier发明(1614)的符号([1],[2.a],[2.b]),选择不同的基底,就…