[Contest20180116]随机游走】的更多相关文章

题意:给一棵树,多次询问$a$到$b$期望步数,每一步都是随机的 对期望DP了解更深入了一些 先预处理$up_x$表示从$x$走到$fa_x$的期望步数 可以直接往上走,也可以先去儿子再回来,设$x$的度数为$d_x$ 所以$up_x=\dfrac{1}{d_x}+\sum\limits_{p\in son_x}\dfrac{1}{d_x}\left(1+up_p+up_x\right)$ 整理得$up_x=d_x+\sum\limits_{p\in son_x}up_p$ 再预处理$down_…
随机游走类似布朗运动,就是随机的向各个方向走吧.产生的图像实在漂亮,所以还是贴出分享. clear all; close all; clc; n=100000; x= 0; y= 0; pixel=zeros(n,2); neighbour=[-1 -1;-1 0;-1 1;0 -1;0 1;1 -1;1 0;1 1]; for i=1:n r=floor(1+8*rand()); y=y+neighbour(r,1); x=x+neighbour(r,2); pix(i,:)=[y x]; e…
1. 关于全局最优化求解   全局最优化是一个非常复杂的问题,目前还没有一个通用的办法可以对任意复杂函数求解全局最优值.上一篇文章讲解了一个求解局部极小值的方法--梯度下降法.这种方法对于求解精度不高的情况是实用的,可以用局部极小值近似替代全局最小值点.但是当要求精确求解全局最小值时,梯度下降法就不适用了,需要采用其他的办法求解.常见的求解全局最优的办法有拉格朗日法.线性规划法.以及一些人工智能算法比如遗传算法.粒子群算法.模拟退火算法等(可以参见我之前的博客).而今天要讲的是一个操作简单但是不…
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 $998244353 $ 取模. 输入格式 第一行三个正整数 \(n,Q,x\). 接下来 \(…
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT 后来做了 HDU 4035 终于会了.... 感谢 雕哥的帮助 !!! 题意 #2542. 「PKUWC 2018」随机游走 题解 原本的模型好像我不会那个暴力dp .... 就是直接统计点集中最后经过的点的期望 , 也就是点集中到所有点步数最大值的期望 . (也许可以列方程高斯消元 ? 似乎没分)…
题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 \(998244353\) 取模. 题解 这道题要求点集 \(S\) 中所有点都至少经过一次的期望步数,直接做不好做,要先用一个 min-max 容斥转换…
Description 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 $998244353 $ 取模. Solution 考虑 min-max 容斥,问题变成求从 \(x\) 点出发第一次到集合 \(S\)…
[LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). 那么怎么求解每个集合的\(min\)呢. 显然以起点为根节点,如果点集中一个点在另外一个点的子树内,显然不需要考虑,索性丢掉.考虑剩下的点,把他们的子树丢掉(要访问子树肯定要访问到某个点),那么剩下的点直接扣下来做一个高斯消元就可以求出到达每个点的期望,那么\(min\)就求出来. 设\(f[S]\…
$ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000$次询问,每次问从根随机游走走遍一个集合的期望步数 $ Solution:$ 考虑$ Min$-$Max$容斥 有$ Max(S)=\sum\limits_{T \subseteq S}(-1)^{|T|+1}Min(T)$ 其中$ S,T$是一个集合,$Max(S)$表示$ S$中最大元素,$Mi…
「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特殊形式的. \[E(\text{max}(S))=\sum_{T\subseteq S}(-1)^{|T|+1}E(\text{min}(T))\] 问题转化之后,然后我们可以枚举所有状态然后 \(O(n)\) 树形 \(dp\) \(-1\) 那项可以 \(O(2^n)\) 推出来,接下来就是子集…