题目 对于两个区间\((a,b),(c,d)\),若\(c < a < d\)或\(c < b < d\)则可以从\((a,b)\)走到\((c,d)\)去,现在有以下两种操作: 给定\(1 \space x \space y\),表示在集合中添加\((x,y)\)这个区间,保证新加入的这个区间一定比之前的所有区间长度长. 给定\(2 \space a \space b\),表示询问是否有一条路径能从第\(a\)个区间走到第\(b\)个区间. 初始时区间集合为空,现在请你回答所有的…
题目描述 从前有一个贸易市场,在一位执政官到来之前都是非常繁荣的,自从他来了之后,发布了一系列奇怪的政令,导致贸易市场的衰落. 有 \(n\) 个商贩,从\(0 \sim n - 1\) 编号,每个商贩的商品有一个价格\(a_i\),有两种政令: \(l, r, c\),对于\(i \in [l, r], a_i \leftarrow a_i + c\) \(l, r, d\),对于\(i \in [l, r], a_i \leftarrow \lfloor {a_i}/{d} \rfloor\…
题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有四种:区间加.区间下取整除.区间求最小值.区间求和. $n\le 100000$ ,每次加的数在 $[-10^4,10^4]$ 之间,每次除的数在 $[2,10^9]$ 之间. 题解 线段树+均摊分析 和 [uoj#228]基础数据结构练习题 类似的均摊分析题. 对于原来的两个数 $a$ 和 $b$ ( $a>b$ ) ,原来的差是 $a-b$ ,都除以 $d$ 后的差是 $\frac{a-b}d$ ,相当于差也除了 $d$…
老师说,你们暴力求除法也整不了多少次就归一了,暴力就好了(应该只有log(n)次) 于是暴力啊暴力,结果我归天了. 好吧,在各种题解的摧残下,我终于出了一篇巨好看(chou lou)代码(很多结构体党嫌丑) 那么具体除法怎么实现就是关键了 对于单个点或者区间内的数完全相同的区间,可以做成区间减法 因为除法会使数变小,而相同的数减小的量是相同的, 那么怎么判断区间内的数是否完全相同呢? 可以维护一个区间最小与区间最大,如果一个区间内最小数等于最大数,那么显然这个区间内所有数相等 区间最小与区间最大…
题意 链接 Sol 势能分析. 除法是不能打标记的,所以只能暴力递归.这里我们加一个剪枝:如果区间内最大最小值的改变量都相同的话,就变成区间减. 这样复杂度是\((n + mlogn) logV\)的. 简单的证明一下:如果没有加的话,每个节点会被除至多log次, 总会除4nlogn次,每次区间加会恢复log个点的势能函数,这样总递归次数就是\(nlog^2n\). 下传标记的时候别忘了把min和max都更新一下 #include<bits/stdc++.h> #define Pair pai…
考虑到每次除法,然后加法,差距会变小,于是维护加法lazytag即可 #include <cstdio> #include <cmath> #define int long long int read() { int x = 0; bool f = 0; char c = getchar(); while (c < 48) f ^= (c == '-'), c = getchar(); while (c > 47) x = x * 10 + (c - 48), c =…
「长乐集训 2017 Day10」划分序列 题目描述 给定一个长度为 n nn 的序列 Ai A_iA​i​​,现在要求把这个序列分成恰好 K KK 段,(每一段是一个连续子序列,且每个元素恰好属于一段),并且每段至少有一个元素,使得和最大的那一段最小. 请你求出这个最小值. 输入格式 第一行两个整数 n,K n, Kn,K,意义见题目描述.接下来一行 n nn 个整数表示序列 Ai A_iA​i​​. 输出格式 仅一行一个整数表示答案. 样例 样例输入 9 4 1 1 1 3 2 2 1 3…
loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积) loj 题解时间 首先想到先分开三进制下每一位,然后每一位分别求结果为0,1,2的树的个数. 然后考虑矩阵树求出来的是树的边权之积的和,而我们要求树的边权的不进位三进制和的和. 由于矩阵树求出来的是树的边权之积的和,考虑暴力上生成函数求解循环卷积,结果就是 $ c $ 的项的系数和. 但很明显生成函数暴力算是没得整的. 所以我们想到了利用单位根实现的k进制FWT. 很幸运的 $ \omega_{ 3 }…
$ \color{#0066ff}{ 题目描述 }$ 给出一个长度为 \(n\) 宽度为 \(1\) ,高度无限的水箱,有 \(n-1\) 个挡板将其分为 \(n\) 个 \(1 - 1\) 的小格,然后向每个小格中注水,水如果超过挡板就会溢出到挡板的另一边,这里的水是满足物理定律的(在无挡板阻拦的情况下会向低处流),现在有 \(m\) 个条件 \((i,j,k)\),表示从左到右数的第 \(i\) 个格子中,在高度为 \(y+0.5\) 的地方是否有水, \(k=1\) 表示有水,\(k=0\…
又是一个矩阵树套多项式的好题. 这里我们可以对每一位单独做矩阵树,但是矩阵树求的是边权积的和,而这里我们是要求加法,于是我们i将加法转化为多项式的乘法,其实这里相当于一个生成函数?之后如果我们暴力做的话,就是强行带入x插值,复杂度$O(8*2n*n^{3})$,还不够优秀,于是我们考虑用$dft$优化这个过程,这里我们需要找到一个三次单位根,于是我们考虑扩域的思想,我们把数表示为$(a+b*w_{3})$,这里$w_{3}$满足$w_{3}^{3}=1$且$w_{3}^{1}+w_{3}^{2}…