自己写的一个分数模板,在运算操作时进行了防溢出的优化: ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } ll lcm(ll a, ll b) { return a / gcd(a,b) * b; } struct divi { ll a = ,b = ; }; divi simdiv(divi a) { ll i; divi divn = a; ll k = gcd(a.a,a.b); divn.a /= k; divn.b /= k; )…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3071 题目大意: 给定一个长度为n的序列m次操作,操作的种类一共有三种 查询 L :查询一个区间的所有的数的最小公倍数modp G :查询一个区间的所有的数的最大公约数modp 修改 C :将给定位置的值修改成x 解题思路: 注意数据范围,每个数字不超过100,所以100以内的质因子最多25个,如果直接求解lcm和gcd的话,long long也是存不下的,所以采用存储质因子的指数,但是如果每个节…
//最大公约数(greatest common divisor),运用递归 int gcd(int a,int b){//注意a要求大于b return !b?a:gcd(b,a%b); } //最小公倍数(Lowest Common Multiple,LCM)的求值运用到最大公约数 int lcm(int a,int b){ int d=gcd(a,b); return a/d*b; }…
Description The GCD of two positive integers is the largest integer that divides both the integers without any remainder. The LCM of two positive integers is the smallest positive integer that is divisible by both the integers. A positive integer can…