Learning to Promote Saliency Detectors】的更多相关文章

Learning to Promote Saliency Detectors 原本放在了思否上, 但是公式支持不好, csdn广告太多, 在博客园/掘金上发一下 https://github.com/lartpang/Machine-Deep-Learning 缩写标注: SD: Saliency Detection ZSL: Zero-Shot Learning 关键内容: 没有训练直接将图像映射到标签中的DNN.相反,将DNN拟合为一个嵌入函数,以将像素和显著/背景区域的属性映射到度量空间.…
原文地址:https://arxiv.org/pdf/1708.01241 DSOD:从零开始学习深度有监督的目标检测器 Abstract摘要: 我们提出了深入的监督对象检测器(DSOD),一个框架,可以从零开始学目标探测器.艺术对象的对象的状态在很大程度上依赖于下架网络预培训的大规模数据分类如ImageNet,造成学习偏差由于双方的损失函数和分类和检测任务之间的类别分布的差异.对检测任务进行模型微调可以在一定程度上缓解这种偏见,但不能从根本上消除这种偏见.此外,将经过训练的模型从分类转移到差异…
https://uwaterloo.ca/centre-for-teaching-excellence/teaching-resources/teaching-tips/educational-technologies/all/gamification-and-game-based-learning Games can introduce goals, interaction, feedback, problem solving, competition, narrative, and fun…
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society 2017, ISBN 978-1-5386-1032-9 Oral Session 1 Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Corre…
2013计算机视觉代码合集一: 原文链接:http://www.yuanyong.org/blog/cv/cv-code-one 切记:一定要看原文链接 原文链接: http://blog.csdn.net/zouxy09/article/details/8550952 此外,计算机视觉博客的代码库:http://www.cvchina.info/codes/ 一.特征提取Feature Extraction: SIFT [1] [Demo program][SIFT Library] [VLF…
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepages(随意排序,不分先后): 1.USC Computer Vision Group:南加大,多目标跟踪/检测等: 2.ETHZ Computer Vision Laboratory:苏黎世联邦理工学院,欧洲最好的几个CV/ML研究机构: 3.Helmut Grabner:Online Boost…
copy from:http://blog.csdn.net/zouxy09/article/details/8550952 一.特征提取Feature Extraction: ·         SIFT [1] [Demo program][SIFT Library] [VLFeat] ·         PCA-SIFT [2] [Project] ·         Affine-SIFT [3] [Project] ·         SURF [4] [OpenSURF] [Matl…
liuyihai@126.com http://www.cnblogs.com/liuyihai/ TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek Kalal在其攻读博士学位期间提出的一种新的单目标长时间(long term tracking)跟踪算法.该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变.部分遮挡等问题.同时,通过一种改进的在线学习机制不断更新跟踪模块的"显…
推荐一篇今年ICCV上基于DenseNet的general object detection的工作.这是目前已知的第一篇在完全脱离ImageNet pre-train模型的情况下使用deep model在有限的训练数据前提下能做到state-of-the-art performance的工作,同时模型参数相比其他方法也要小很多,最小的一个模型参数只有5.9M,在VOC 2007 test set上可以达到73.6mAP,代码和模型都已经开源,欢迎大家关注和意见. DSOD: Learning D…
Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awesome-object-detection This is a list of awesome articles about object detection. R-CNN Fast R-CNN Faster R-CNN Light-Head R-CNN Cascade R-CNN SPP-Net Y…