MT【307】周期数列】的更多相关文章

(2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列. 分析:若$a_1\in Q$由$|a_{n+1}-2a_n|=2$知道$a_n\in Q$. 设$a_n=\dfrac{q}{p},(p,q)=1$则$a_{n+1}=2a_n\pm2=\dfrac{2q\pm2p}{p}$故$a_n,a_{n+1}$ 在不约分的情况下分母相同.设$a_1=\d…
题目是要求出斐波那契数列n项对一个正整数取模,那么可以把斐波那契数列取模后得到的数列周期求出来. 比如下面一个题目:求出f[n]的后4位,先求出数列对10000取模的周期,然后再查找即可. #include<stdio.h> #define N 15000 #define MOD 10000 int a[N]; int main(void) { int i,n; a[]=; a[]=; ;i<N;i++) a[i]=(a[i-]+a[i-])%MOD; ) printf(; } 或者利用…
五种常见的排序算法实现 算法描述 1.插入排序 从第一个元素开始,该元素可以认为已经被排序 取出下一个元素,在已经排序的元素序列中从后向前扫描 如果该元素(已排序)大于新元素,将该元素移到下一位置 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置 将新元素插入到该位置后 重复步骤2~5 在这个基础上有衍生出提高效率的二分插入排序 2.冒泡排序 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.这步做完后,最后的元素会是最大…
题目描述: 对于斐波那锲数列f(0)=0,f(1)=1,....求f(f(n)的值 0<=n<=10^100 给出T组数据,每行一个n 输出n行 f(f(n)) 样例输入: 4 0 1 2 6 输出: 0 1 1 21 思路: 原来菲波那切数列是个纯周期数列,对于每一个模数MOD,它会有一个最小正周期,那么我们可以把这个很大的数n 或者 f(n) 映射到 一个的小区间,然后矩阵快速幂就OK了 关于哪个最小正周期的值,暴力去求就行了. #include<iostream> #incl…
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin x_n&,x_n\le x_{n-1}\\x_n+\cos x_n&,x_n> x_{n-1}\end{aligned} \right.\end{equation*}证明:$x_4>x_3$且$0<x_n<\pi$ 证明:由定义$x_3=x_2+\cos x_2$若$…
(2016清华自招领军计划37题改编) 设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则下面不正确的是(      )A.$a_{n+2}=5a_{n+1}-6a_n$ B.$\{a_n\}$中的项都是整数 C.$a_n>4^n$ D.$\{a_n\}$中与2015最接近的项为$a_7$ 答案:C 提示:$a_{n+3}a_{n+1}-a_{n+2}^2=6^{n+1}=6(a_{n+2}a_n-a_{n+1}^2)…
已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a}$ 证明:$\{k_n\}$为整数数列. 提示:注意到$x^3=x^2+x+1$故 $a^{n+1}=a^n+a^{n-1}+a^{n-2}$$b^{n+1}=b^n+b^{n-1}+b^{n-2}$$c^{n+1}=c^n+c^{n-1}+c^{n-2}$从而可得$k^{n+1}=k^n+k^{…
分析:$t(n)=n-[\frac{n}{2}]-[\frac{n}{3}]-[\frac{n}{6}]$的周期为6,故 $\sum\limits_{n=1}^{2014}(n-t(n))=\sum\limits_{n=1}^{2014}n-2014=2027091$ 评:在证明著名的埃尔米特恒等式:$\sum\limits_{k=0}^{n-1}[x+\frac{k}{n}]=[nx],x\ge0 ,n\in N^+$时也是用了同样的技巧.提示:构造$t(n)=\sum\limits_{k=0…
(清华2017.4.29标准学术能力测试7) 已知数列$\{x_n\}$,其中$x_1=a$,$x_2=b$,$x_{n+1}=x_n+x_{n-1}$($a,b$是正整数),若$2008$为数列中的某一项,则$a+b$可能的取值有(   ) A.8    B.9     C.10     D.11 答案:A和B  $(a,b)=(7,1)\vee (1,8)$…
(2018浙江省赛13题) 设实数$x_1,x_2,\cdots,x_{2018}$满足$x_{n+1}^2\le x_nx_{n+2},(n=1,2,\cdots,2016)$和$\prod\limits_{k=1}^{2018}x_k=1$证明:$x_{1009}x_{1010}\le1.$ 证明:事实上,由$x_{n+1}^2\le x_nx_{n+2}$易知道,下标为奇数的项同号,下标为偶数的项同号.我们不妨考虑$x_k>0,(k=1,2,\cdots,2018)$(若都为负数只需每一项…