上面一篇文章中探讨了玻尔兹曼分布的起源: 在不清楚目标的真实分布,也不知道样本分布的时候,假设任意输入与输出组合都是同样可能发生的,这样是最公平,最无偏的先验. 因为无法直接统计出给定任意一种输入x,各种y出现的概率,所以把题目转换一下,与其直接求p(y|x),不如假设概率都是由一个能量函数E来决定,之后拟合E(x),同时调查p(y|E)需要满足怎样的形式. softmax函数中,E是由最后一层特征经过线性变换W·u得来的,因为神经网络的通用拟合性,可以看做能量E(x)实际上可以满足任何函数形式…
有A,B两个表对应A_AR,B_AR两个模型B表interval_id对应A表id现在要查a表的数据,且没有code为a的子数据要求使用yii2的AR模型写查询: A_AR::find()->where([ 'exists', B_AR::find()->where("interval_id={{A}}.id")->andWhere(['code' => 'a'])]); 红色部分需要这样写,如果写成 ->where(['interval_id' =>…
深度学习读书笔记之RBM 声明: 1)看到其他博客如@zouxy09都有个声明,老衲也抄袭一下这个东西 2)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 3)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的.如果某部分不小心侵犯了大家的利益,还望海涵,并联系老衲删除或修改,直到相关人士满意为止. 4)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢.…
序言: 神经网络结构,作为最成功的机器学习模型之一,其工作原理一直被埋藏得比较深,其解释性以至于被称为黑盒. 自己对于DNN的理解也只能算刚踏入了门槛,对于人脑的原理与DNN原理之间的互通性,一直是非常深信的,所以想一窥DNN成功背后的数学原理. 通过DNN原理探究系列博文,希望能总结归纳已经理解的知识点,梳理清楚知识点之间的关系结构,同时探讨各种流派对于DNN原理的解读. 目录会随着自己掌握的知识量逐渐扩展新的分支,以此记录自己的学习历程. 当前知识结构树(2017-11-11) 分类器原理(…
Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softmax 回归 vs. k 个二元分类器 7 中英文对照 8 中文译者 转自:http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上…
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参数初始化 对多维Tensor按维度操作 定义softmax操作 softmax回归模型 定义损失函数 定义准确率 训练模型 模型预测 softmax的简洁实现 初始化参数和获取数据 定义网络模型 初始化模型参数 定义损失函数 定义优化函数 训练 softmax的基本概念 分类问题 一个简单的图像分类…
http://blog.csdn.net/dark_scope/article/details/17228643 〇.说明 本文的所有代码均可在 DML 找到,欢迎点星星. 一.引入 推荐系统(主要是CF)是我在参加百度的电影推荐算法比赛的时候才临时学的,虽然没拿什么奖,但是知识却是到手了,一直想写一篇关于推荐系统的文章总结下,这次借着完善DML写一下,权当是总结了.不过真正的推荐系统当然不会这么简单,往往是很多算法交错在一起,本文只是入门水平的总结罢了. (本文所用测试数据是movielens…
目录: 一.RBM 二.Deep Brief Network 三.Deep Autoencoder 一.RBM 1.定义[无监督学习] RBM记住三个要诀:1)两层结构图,可视层和隐藏层:[没输出层]2)层内无连接,层间全连接:3)二值状态值,前向反馈和逆向传播求权参.定义如下: 一般来说,可见层单元用来描述观察数据的一个方面或一个特征,而隐藏层单元的意义一般来说并不明确,可以看作特征提取层. 比较通俗解释RBM的博客:https://blog.csdn.net/u013631121/artic…
Softmax是啥? Hopfield网络的能量观点 1982年的Hopfiled网络首次将统计物理学的能量观点引入到神经网络中, 将神经网络的全局最小值求解,近似认为是求解热力学系统的能量最低点(最稳定点). 为此,特地为神经网络定义了神经网络能量函数$E(x|Label)$,其中$x$为输入. $E(x|Label)=-\frac{1}{2}Wx \Delta Y  \quad where \quad \Delta Y=y-label$   (省略Bias项) 值得注意的是,这套山寨牌能量函…
能量模型 RBM用到了能量模型. 简单的概括一下能量模型.假设一个孤立系统(总能量$E$一定,粒子个数$N$一定),温度恒定为1,每个粒子有$m$个可能的状态,每个状态对应一个能量$e_i$.那么,在这个系统中随机选出一个粒子,这个粒子处在状态$k$的概率,或者说具有状态$k$的粒子所占的比例为: $$p(state=k)=\frac{e^{-e_k}}{Z}$$ 其中$Z=\sum e^{-e_i}$称为配分函数. 扩展开来,在一个正则系综中,系统$i$处在状态$S_i$的概率为: $$P(s…