针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数…
逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述支持向量机,事实上,我将会从逻辑回归开始展示我们如何一点一点修改来得到本质上的支持向量机. 逻辑回归公式 逻辑回归公式如下图所示, 可以看出逻辑回归公式由两个变量x和\(\theta\)构成,其中x表示输入的数据,而\(\theta\)是可学习的变量,如图中右半部分所示,其图像坐标轴横轴为x.\(h…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 12.6SVM总结 推荐使用成熟的软件包 用以解决 SVM 最优化问题的软件很复杂,且已经有研究者做了很多年数值优化.因此强烈建议使用高优化软件库中的一个,而不是尝试自己落实一些框架.有许多好的软件库,NG用得最多的两个是 liblinear 和 libsvm 归一化处理 Note 无论使用使用何种模型进行拟合,原始输入数据都需要进行归一化处理 需要指定的参数 即使用高度优化的软件包,有些参数还是需要自己做出指定的. 正则…
神经网络模型建立在很多神经元之上,每一个神经元又是一个个学习模型.这些神经元(也叫激活单元,activation unit)采纳一些特征作为输出,并且根据本身的模型提供一个输出.下图是一个以逻辑回归模型作为自身学习模型的神经元示例,在神经网络中,参数又可被成为权重(weight). 我们设计出了类似于神经元的神经网络,效果如下: 其中…
一. 逻辑回归 1.背景:使用逻辑回归预测学生是否会被大学录取. 2.首先对数据进行可视化,代码如下: pos = find(y==); %找到通过学生的序号向量 neg = find(y==); %找到未通过学生的序号向量 plot(X(pos,),X(pos,),,); %使用+绘制通过学生 hold on; plot(X(neg,),X(neg,),); %使用o绘制未通过学生 % Put some labels hold on; % Labels and Legend xlabel('E…
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.5重建压缩表示 Reconstruction from Compressed Representation 使用PCA,可以把 1000 维的数据压缩到100 维特征,或将三维数据压缩到一二维表示.所以,如果如果把PCA任务是一个压缩算法,应该能回到这个压缩表示之前的形式,回到原有的高维数据的一种近似.下图是使用PCA将样本\(x^{(i)}映射到z^{(i)}\)上 即是否能通过某种方法将z上的点重新恢复成使用\(x_{…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landmark)如图所示为\(l^{(1)},l^{(2)},l^{(3)}\),设核函数为 高斯函数 ,其中设预测函数y=1 if \(\theta_0+\theta_{1}f_1+\theta_{2}f_2+\theta_{3}f_3\ge0\) 在实际中需要用 很多标记点 ,那么如何选取 标记点(lan…
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:"Negative Class",1:"Possitive Class". 逻辑回归的预测函数表达式hθ(x)(hθ(x)>=0 && hθ(x)<=1): 其中g(z)被称为逻辑函数或者Sigmiod函数,其函数图形如下: 理解预测函数hθ(x)的…
到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致它们效果很差. 在这段视频中,我会解释什么是过度拟合问题,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改善或者减少过度拟合问题.如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为0),但是可能会不能推…