机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是 机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的 不断发展,相信这方面的人才需求也会越…
机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大…
前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大. 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内大点的公司里百度,阿里,腾讯,网易,搜狐,华为(华为的岗位基本都是随机分配,机器学习等岗位基本面向的是博士)等…
前言: 本文总结的常见机器学习算法(主要是一些常规分类器)大概流程和主要思想. 朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数. 2. 计算公式如下: 其中一项条件概率可以通过朴素贝叶斯条件独立展开.要注意一点就是 的计算方法,而由朴素贝叶斯的前提假设可知, = ,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然…
为了对GMM-HMM在语音识别上的应用有个宏观认识,花了些时间读了下HTK(用htk完成简单的孤立词识别)的部分源码,对该算法总算有了点大概认识,达到了预期我想要的.不得不说,网络上关于语音识别的通俗易懂教程太少,都是各种公式满天飞,很少有说具体细节的,当然了,那需要有实战经验才行.下面总结以下几点,对其有个宏观印象即可(以孤立词识别为例). 一.每个单词的读音都对应一个HMM模型,大家都知道HMM模型中有个状态集S,那么每个状态用什么来表示呢,数字?向量?矩阵?其实这个状态集中的状态没有具体的…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
没有系统学过数学优化,但是机器学习中又常用到这些工具和技巧,机器学习中最常见的优化当属凸优化了,这些可以参考Ng的教学资料:http://cs229.stanford.edu/section/cs229-cvxopt.pdf,从中我们可以大致了解到一些凸优化的概念,比如凸集,凸函数,凸优化问题,线性规划,二次规划,二次约束二次规划,半正定规划等,从而对凸优化问题有个初步的认识.以下是几个重要相关概念的笔记. 凸集的定义为: 其几何意义表示为:如果集合C中任意2个元素连线上的点也在集合C中,则C为…
K-近邻算法概述 简单的说,K-近邻算法采用不同特征值之间的距离方法进行分类 K-近邻算法 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用范围:数值型和标称型. k-近邻算法的一般流程 收集数据:可使用任何方法 准备数据:距离计算所需要的数值,最好是结构化的数据格式. 分析数据:可以使用任何方法. 训练算法:此步骤不适用于K-近邻算法 使用算法:首先需要输入样本数据和节后话的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分…
前言: 本次实验是用EM来学习HMM中的参数,并用学好了的HMM对一些kinect数据进行动作分类.实验内容请参考coursera课程:Probabilistic Graphical Models 中的的最后一个assignmnet.实验用的是kinect关节点数据,由于HMM是一个时序模型,且含有隐变量,所以这个实验不是很好做.大家对HMM不熟悉的话可以参考网友的实验:code. kinect人体关节数据中, 每个关节点由3个坐标数据构成,多个关节点数据(实验中为10个)构成一个pose,多个…
算法 假定数据有M个特征,则这些数据相当于在M维空间内的点 \[X = \begin{pmatrix} x_{11} & x_{12} & ... & x_{1M} \\ x_{21} & x_{22} & ... & x_{2M} \\ . & . & & .\\ . & . & & .\\ . & . & & .\\ x_{N1} & x_{N2} & ... &am…