特殊情形的Riemann引理】的更多相关文章

设 $f(x)$ 是 $[0,\infty)$ 上的单调函数, 则对任意固定的 $a$, 有 $\dps{\vlm{n}\int_0^a f(x)\sin nx\rd x =0}$; 若同时还有 $\dps{\vlm{x}f(x)=0}$, 则 $\dps{\vlm{n}\int_0^\infty f(x)\sin nx\rd x=0}$. 证明: (1) 由积分第二中值定理知 $$\beex \bea \sev{\int_0^a f(x)\sin nx\rd x} &=\sev{f(0)\in…
1 Riemann 积分的局限性 (1) Riemann 积分与极限的条件太严:    $$\bex    f_k\rightrightarrows f\ra \lim \int_a^b f_k    =\int_a^b \lim f_k.    \eex$$ 这 ``一致收敛'' 极大地限制了 Riemann 积分的应用. (2) 积分运算不完全是微分运算的逆运算:    $$\bex    f\mbox{ 在 }x\mbox{ 连续}\ra \frac{\rd}{\rd x}\int_a^x…
一.Catalan数性质   1.1 令h(0)=1,h(1)=1,catalan数满足递推式:   h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)   例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2 h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5   1.2 另类递推式: h(n)=h(n-1)*(4*n-2)/(n+1);   1.3 递推关系的解为:…
atitit.细节决定成败的适合情形与缺点 1. 在理论界有两种观点:一种是"细节决定成败",另一种是"战略决定成败".1 1.1. 格局决定成败,方向决定成败 战略决定成败"1 1.2.   战略用的是望远镜,细节用的是显微镜.1 2. 只有战略正确,细节才会有意义.2 2.1. 只见树木,不见森林2 2.2. 对于一艘驶错了方向的航船来说,任何来风都是逆风,2 2.3. 南辕北辙的故事2 2.4. 大失误是战略,小失误是细节,战略错了回天无力,细节错了…
CSharpGL(38)带初始数据创建Vertex Buffer Object的情形汇总 开始 总的来说,OpenGL应用开发者会遇到为如下三种数据创建Vertex Buffer Object的情形: 任意一个struct类型T data: 任意一个元素类型为struct的数组T[] array: 任意一个非托管数组UnmanagedArray<T> array: 而可创建的Vertex Buffer Object也分为如下的类别: 描述顶点属性(位置.颜色.法线等)的VertexBuffer…
单复变函数几何理论最高的成就我想应该属于Riemann映射定理吧! Riemann映射定理:$\mathbb C$中任意边界多余一个点的单连通域$D$都与单位圆盘$B(0,1)$等价,即存在着$D$上的单叶全纯函数$f$使得$f(D)=B(0,1)$.而且$f$被如下条件所唯一确定:$$f(a)=0,{\rm arg}f'(a)=\theta$$其中$a$为$D$中任意一点,$\theta$为任意实数. 特别的可以要求$f$不仅双全纯的把$D$映成$B(0,1)$,且可以将$D$中指定的一点$a…
Mittag-Leffler分解定理的证明有多种,比如可以利用一维$\overline{\partial}$的解来构造相应的函数,还可以利用极点主部的Taylor多项式来进行修正使得$\sum(g_{n}-P_{n})$在$\mathbb C$上一致收敛来构造函数. 这里要说一下,因为上述级数是一个亚纯函数的级数,是有极点的.所以这里在$K$的收敛,均是指级数$\sum(g_{n}-P_{n})$仅有有限项在$K$中有极点,同时去掉这些项以后所得新的级数收敛.但是无论是哪一种证明,都无法给出函数…
很多时候,处于各种便利性或折衷或者通用性亦或是限制的原因,会借助于模板生成结果,在此介绍两种使用velocity merge的情形,第一种是和spring mvc一样,将模板放在velocityConfigurer属性指定的路径下,如: <bean id="velocityConfigurer" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer"> <pr…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上说每种颜色的个数都是一定的,所以肯定是Burnside了 2.确定置换群:首先输入的那么多肯定是每个都是一个置换,那么要不要对每个叠加呢?不用的,因为题目上说“输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态”.所以对于读入的所有就是整个置换…
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 1534    Accepted Submission(s): 435 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a,…