P7961 数列 题解】的更多相关文章

[HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<...<a2n-1,所有的偶数项满足a2<a4<...<a2n: (3)任意相邻的两项a2i-1与a2i(1<=i<=n)满足奇数项小于偶数项,即:a2i-1<a2i. 现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列.…
https://www.lydsy.com/JudgeOnline/problem.php?id=1500 https://www.luogu.org/problemnew/show/P2042#sub 请写一个程序,要求维护一个数列,支持以下 6 种操作: 请注意,格式栏 中的下划线‘ _ ’表示实际输入文件中的空格 太神啦太神啦,我也不会做,我也是copycat的啊. https://www.luogu.org/blog/IAmHellWord/solution-p2042 直接看上面这位神…
看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \(a_{\mathrm{id}}\) 修改为 \(x\). QUERY x: 求最小的整数 \(p(0 \leq p < n)\),使得 \(\gcd(a_0, a_1, ..., a_p) \cdot \operatorname{XOR}(a_0, a_1, ..., a_p) = x\). 其中…
https://www.luogu.org/problemnew/show/P1962(题目传送) n的范围很大,显然用普通O(N)的递推求F(n)铁定超时了.这里介绍一种用矩阵快速幂实现的解法: 首先普及一下矩阵乘法: 一个m*q的m行q列的矩阵A*一个q*n的q行n列的矩阵B得到一个m*n的m行n列的矩阵AB,则有: 通俗的讲,就是新矩阵第i行j列的数等于第一个矩阵第i行的q个数分别乘第二个矩阵的第j列的q个数并把它们加起来的和.注意,矩阵乘法满足结合律和分配律,但不满足交换律. 我们可以把…
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入格式 ·第 1 行:一个整数 n 输出格式 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入 #1 复制 5 输出 #1 复制 5 输入 #2 复制 10 输出 #2 复制 55 说明/提示 对于 60% 的数…
每日一题 day25 打卡 Analysis dp[i][j]=dp[i-1][j-1]*(i-j)+dp[i-1][j]*(j+1); 其中i和j是表示前i个数中有j个小于号,j<=i-1 要在长度为i的数列中插入一个数,那么共有i+1个位置可以插入(第一个位置最后一个位置和中间的i-1个位置).由于插入的数字大于之前所有数,那么在原串中是小于号的位置插入这个数会多出来一个大于号,小于号数量则不变,如果在大于号位置插入会多一个小于号,而插在头位置也多一个大于,末位置多一个小于,总计,使小于号数…
可食用的题目链接 题解: 有题目得:这个题有巧做法而不是暴力模拟.废话 这个题看着像一道dp,因为可以由前一种(数据更小的推出数据更大的)推出后一种. 我们设已经得到了n-1个数的总方法(1~n-1),然后根据这个我们要推出1~n的方法, 于是我们考虑把新加入的一个数n枚举其插入位置, 因为每插入一个数,它一定比前面的任何数都大(从小到大) 如果插入到最左边,会造成新的序列比原来多一个大于号,如果插入到最右边,会造成新的序列比原来多一个小于号. (注意是这个数插入到符号的位置) 如果插入到大于号…
原题链接 首先,我们考虑用差分解决问题. 用 \(x_i\) 表示原数列,\(a_i = x_i - x_{i-1}\) 那么,先普及一下差分: 如果我们只需要维护区间加值,单点求值的话,你会发现两个重要等式: \[a_i = x_i - x_{i-1} \] \[\sum_{j=1}^i a_j = x_i \] 我们每次修改 \(l,r\) 区间增加 \(k\) 的话,你会发现: 则 \(l+1,r\) 这一段,所有的 \(a_i\) 都是不变的.这是因为: \[(x_i + k) - (x…
(题目为啥要强调用十进制输出呢,明明就是故意提醒) 分析一下样例 k=3k=3时,数列为:1,3,4,9,10,12,13..1,3,4,9,10,12,13.. 转换成三进制就是:1,10,11,100,101,110,111..1,10,11,100,101,110,111.. 看起来像是二进制,转化成十进制看看 1,2,3,4,5,6,7..1,2,3,4,5,6,7.. 显然,第nn项就是nn. 程序就把这个过程逆回去,先把nn转换成二进制,再把它当成KK进制,重新转换为十进制.…
前言:毒瘤数据结构题,半个下午都在搞它了…… --------------------------- 题目链接 题目大意:给定一个长度为$n$的序列,有两种操作:1.把$a_x$的值改成$y$.2.求一个最小的$p$使得$gcd(a_0,a_1,\cdots ,a_p)*XOR(a_0,a_1,\cdots ,a_p)=x$. ------------------------------ 这种数据结构题一般只能用分块解决.线段树什么的不得T飞…… 对于每个块,我们维护块内的$gcd$和$xor$…