pytorch学习笔记一之张量】的更多相关文章

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/linear_regression.py 张量的操作 拼接 torch.cat() torch.cat(tensors, dim=0, out=None) 功能:将张量按照 dim 维度进行拼接 tensors: 张量序列 dim: 要拼接的维度 代码示例: t = torch.ones((2, 3)) t_0 = torch.cat([t, t], d…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/tensor_introduce1.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/tensor_introduce1.py Tensor 的概念 Tensor 中文为张量.张量的意思是一个多维数组,它是标量.向量.矩阵的高维扩展. 标量可以称为 0 维张量,向…
记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # All codes and comments from <<深度学习框架Pytorch入门与实践>> # Code url : https://github.com/zhouzhoujack/pytorch-book # lesson_2 : Neural network of PT(Py…
书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and comments from <<深度学习框架Pytorch入门与实践>> # Code url : https://github.com/zhouzhoujack/pytorch-book # lesson_1 : Basic code syntax of PT(Pytorch) im…
原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于python语言的的科学计算包,主要分为两种受众: 能够使用GPU运算取代NumPy 提供最大灵活度和速度的深度学习研究平台 开始 Tensors Tensors与numpy的ndarray相似,且Tensors能使用GPU进行加速计算. 创建5 * 3的未初始化矩阵: 创建并随机初始化矩阵: 创建一…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/computational_graph.py 计算图 深度学习就是对张量进行一系列的操作,随着操作种类和数量的增多,会出现各种值得思考的问题.比如多个操作之间是否可以并行,如何协同底层的不同设备,如何避免冗余的操作,以实现最高效的计算效率,同时避免一些 bug.因此产生了计算图 (Computational Graph). 计算图是用来描述运算的有向无环…
PyTorch 的数据增强 我们在安装PyTorch时,还安装了torchvision,这是一个计算机视觉工具包.有 3 个主要的模块: torchvision.transforms: 里面包括常用的图像预处理方法 torchvision.datasets: 里面包括常用数据集如 mnist.CIFAR-10.Image-Net 等 torchvision.models: 里面包括常用的预训练好的模型,如 AlexNet.VGG.ResNet.GoogleNet 等 深度学习模型是由数据驱动的,…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/momentum.py 这篇文章主要介绍了 PyTorch 中的优化器,包括 3 个部分:优化器的概念.optimizer 的属性.optimizer 的方法. 优化器的概念 P…
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07: How to make netural network wide and deep ? Lecture 08: Pytorch DataLoader Lecture 09: softmax Classifier part one part two : real problem - MNIST i…
一.对Tensor的操作 从接口的角度讲,对Tensor的操作可以分为两类: (1)torch.function (2)tensor.function 比如torch.sum(a, b)实际上和a.sum(b)功能等价. 从存储的角度讲,对Tensor的操作也可以分为两类: (1)不修改自身数据,如a.add(b),加法结果返回一个新的tensor: (2)修改自身数据,如a.add_(b),加法结果仍存在a中,a被改变. 函数名以_结尾的称为inplace方式. 二.Tensor的创建 常见的…