风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致. 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是"内容损失"(content loss),代表合成的图像的特征与基准图像的特征之间的L2距离,保证生成的图像内容和基准图像保持一致. 3. 损失函数之二是"风格损失"(style loss),代表合成图像的特征与风格图像的特征之间的Gram矩阵之间的差异,保证生成图像的风格和风格图像保持一致. 4. 损失函数之三是"差…
图像风格迁移 最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效, Content Loss 根据输入图片和输出图片的像素差别可以比较损失 \(l_{content} = \frac{1}{2}\sum (C_c-T_c)^2\) Style Loss 从中间提取多个特征层来衡量损失. 利用\(Gram\) \(Matrix\)(格拉姆矩阵)可以衡量风格的相关性,对于一个实矩阵\(X\),矩阵\(XX^T\)是\(X\)的行向量的格拉姆矩阵 \(l_{style}=\sum…
引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“迁移”到另一张图片上: 然而,原始的风格迁移(论文地址:https://arxiv.org/pdf/1508.06576v2.pdf)的速度是非常慢的.在GPU上,生成一张图片都需要10分钟左右,而如果只使用CPU而不使用GPU运行程序,甚至需要几个小时.这个时间还会随着图片尺寸的增大而迅速增大.…
近日,期刊平台 Distill 发布了谷歌研究人员的一篇文章,介绍一个适用于神经网络可视化和风格迁移的强大工具:可微图像参数化.这篇文章从多个方面介绍了该工具. 图像分类神经网络拥有卓越的图像生成能力.DeepDream [1].风格迁移 [2] 和特征可视化 [3] 等技术利用这种能力作为探索神经网络内部原理的强大工具,并基于神经网络把艺术创作推进了一小步. 所有这些技术基本上以相同的方式工作.计算机视觉领域使用的神经网络拥有图像的丰富内部表征.我们可以使用该表征描述我们希望图像具备的特性(如…
9月25日微软今年一年一度的Ignite 2017在佛罗里达州奥兰多市还是如期开幕了.为啥这么说?因为9月初五级飓风厄玛(Hurricane Irma) 在佛罗里达州登陆,在当地造成了挺大的麻烦.在这之前,微软还一度考虑是否延期或改地点.不容易啊!抛去十一长假,这也就是一周前的事.虽然没能亲身到现场,本着学无止境的无奈和严于律己的觉悟,我这周末还是抽空跟进学习了一番. Ignite 2017官网: https://www.microsoft.com/en-us/ignite/ Satya’s V…
 Style Transfer 这个方向火起来是从2015年Gatys发表的Paper A Neural Algorithm of Artistic Style(神经风格迁移) , 这里就简单提一下论文的主要思想. 论文概述   Gatys这篇论文的核心思想就是 -- 图片的内容和风格是可以分离的,可以通过神经网络的方式,将图片的风格进行自由交换.  如果内容和风格是可以分离的,那么风格的迁移即可转化成这样一个问题:让生成图片的内容与内容来源图片尽可能相似,让图片的风格与风格来源图片尽可能相似.…
前文回溯,之前一篇:含辞未吐,声若幽兰,史上最强免费人工智能AI语音合成TTS服务微软Azure(Python3.10接入),利用AI技术将文本合成语音,现在反过来,利用开源库Whisper再将语音转回文字,所谓闻其声而知雅意. Whisper 是一个开源的语音识别库,它是由Facebook AI Research (FAIR)开发的,支持多种语言的语音识别.它使用了双向循环神经网络(bi-directional RNNs)来识别语音并将其转换为文本. Whisper支持自定义模型,可以用于实现…
风格迁移 风格迁移算法经历多次定义和更新,现在应用在许多智能手机APP上. 风格迁移在保留目标图片内容的基础上,将图片风格引用在目标图片上. 风格本质上是指在各种空间尺度上图像中的纹理,颜色和视觉图案;内容是图像的高级宏观结构. 实现风格迁移背后的关键概念与所有深度学习算法的核心相同:定义了一个损失函数来指定想要实现的目标,并最大限度地减少这种损失. 知道自己想要实现的目标:在采用参考图像的样式的同时保留原始图像的内容.如果我们能够在数学上定义内容和样式,那么最小化的适当损失函数将是以下内容:…
1. TensorFlow TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,表达了高层次的机器学习计算,大幅简化了第一代系统,并且具备更好的灵活性和可延展性. TensorFlow一大亮点是支持异构设备分布式计算,它能够在各个平台上自动运行模型,从电话.单个CPU / GPU到成百上千GPU卡组成的分布式系统. TensorFlow支持CNN.RNN和LSTM算法,这都是目前在Image,Speech和NLP最流行的深度神经网络模型. 2015年11月5日,G…
本课介绍了近年来人们对理解卷积网络这个“黑盒子”所做的一些可视化工作,以及deepdream和风格迁移. 1 卷积网络可视化 1.1 可视化第一层的滤波器 我们把卷积网络的第一层滤波器权重进行可视化(权重值缩放到0-255之间)可以发现: 第一层的滤波器可以看做模版匹配,那么它寻找的模式就是一些边和线.也就是说,当滤波器滑动到边和线的时候,会有较大的激活值.这跟人脑的功能几乎是一致的. 然而,我们只能可视化第一层滤波器得到如此有意义的结论,可视化后面的滤波器,我们将无法看到什么有用的东西. 1.…