隐私计算FATE-模型训练】的更多相关文章

一.说明 本文分享基于 Fate 自带的测试样例,进行 纵向逻辑回归 算法的模型训练,并且通过 FATE Board 可视化查看结果. 本文的内容为基于 <隐私计算FATE-概念与单机部署指南>中部署的环境. 二.进入容器 执行以下命令,进入 Fate 的容器中: docker exec -it $(docker ps -aqf "name=standalone_fate") bash 可以看到其中有一个 examples 的目录,里面包含各种算法的测试样例,以及测试的数据…
一.说明 Fate 的模型预测有 离线预测 和 在线预测 两种方式,两者的效果是一样的,主要是使用方式.适用场景.高可用.性能等方面有很大差别:本文分享使用 Fate 基于 纵向逻辑回归 算法训练出来的模型进行离线预测实践. 基于上文 <隐私计算FATE-模型训练> 中训练出来的模型进行预测任务 关于 Fate 的安装部署可参考文章 <隐私计算FATE-概念与单机部署指南> 二.查询模型信息 执行以下命令,进入 Fate 的容器中: docker exec -it $(docker…
一.说明 本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测. 二分类算法:是指待预测的 label 标签的取值只有两种:直白来讲就是每个实例的可能类别只有两种(0 或者 1),例如性别只有 男 或者 女:此时的分类算法其实是在构建一个分类线将数据划分为两个类别. 多分类算法:是指待预测的 label 标签的取值可能有多种情况,例如个人爱好可能有 篮球.足球.电影 等等多种类型.常见算法:Softmax.SVM.KNN.决策…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…
在Kaldi中,单音素GMM的训练用的是Viterbi training,而不是Baum-Welch training.因此就不是用HMM Baum-Welch那几个公式去更新参数,也就不用计算前向概率.后向概率了.Kaldi中用的是EM算法用于GMM时的那三个参数更新公式,并且稍有改变.  Baum-Welch算法更新参数时,因为要计算前向后向概率,很费时间,因此使用Viterbi Training作为Baum-Welch算法的近似.在Baum-Welch算法中,计算前向后向概率时,要用到所有…
本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26 新智元 1新智元编译   来源:ThingsExpo.Medium 作者:Natalia Ponomareva.Gokula Krishnan Santhanam 整理&编译:刘小芹.李静怡.胡祥杰 新智元日前宣布,获6家顶级机构总额达数千万元的PreA轮融资,蓝驰创投领投,红杉资本中国基金.高瓴智…
目录 1. gmm-init-mono 模型初始化 2. compile-train-graghs 训练图初始化 3. align-equal-compiled 特征文件均匀分割 4. gmm-acc-stats-ali 累积模型重估所需数据 5. gmm-sum-accs 并行数据合并 6. gmm-est 声音模型参数重估 7. gmm-boost-silence 模型平滑处理 8. gmm-align-compiled 特征重新对齐 9. train_mono.sh 整体流程详解 转载注明…
1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和10000个测试样本集: 分4部分,分别是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集,每个标签的值是0~9之间的数字: 原始图像归一化大小为28*28,以二进制形式保存 2.  Windows+caffe框架下MNIST数据集caffemodel分类模型训练及测试 1. 下载mnist数…
一.TensorFlow的模型保存和加载,使我们在训练和使用时的一种常用方式.我们把训练好的模型通过二次加载训练,或者独立加载模型训练.这基本上都是比较常用的方式. 二.模型的保存与加载类型有2种 1)需要重新建立图谱,来实现模型的加载 2)独家加载模型 模型的保存与训练加载: tf.train.Saver(<var_list>,<max_to_keep>) var_list: 指定要保存和还原的变量,作为一个dict或者list传递 max_to_keep: 指示要保留的最大检查…
前言 4 月热播的韩剧<王国>,不知道大家有没有看?我一集不落地看完了.王子元子出生时,正逢宫内僵尸作乱,元子也被咬了一口,但是由于大脑神经元尚未形成,寄生虫无法控制神经元,所以医女在做了简单处理后,判断不会影响大脑.这里提到了人脑神经元,它也是 AI 神经网络的研究起源,具体展开讲讲. 人脑中总共有 860 亿个神经元,其中大脑皮层有 160 亿个神经元.大脑皮层的神经元数量决定了动物的智力水平,人的大脑皮层中神经元数量远高于其他物种,所以人类比其他物种更聪明.大象的脑子总共有 2570 亿…