函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simplex', callback=None, options=None) 今天阅读数据建模第一章线性规划问题,问题描述如下: 通过介绍我们知道了线性规划,就是目标函数及约束条件均为线性函数. 通过画图我们可知,X1,X2的最优解为2,6,目标值为26. 我们如何时候这个scipy的公式来计算这个值呢:…
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学建模新手入门 『Python 数学建模 @ Youcans』 系列 是专门为学习数学建模.准备数模竞赛的小白准备的系列教程. [Python数学建模-01.新手必读] 主要讨论小白刚刚接触数学建模的几个困惑: 学习数学建模难不难?应该怎么学? 学习数学建模选择什么计算机语言最好?我要学 Matlab…
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手把手教你搞定微分方程. 通过二阶 RLC 电路问题,学习微分方程模型的建模.求解和讨论. 欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新 1. 微分方程 1.1 基本概念 微分方程是描述系统的状态随时间和空间演化的数学工具.物理中许多涉及变力的运动学.动力学问题,如空…
一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结构信息,对数据进行分簇(分类).聚类算法的目标是,簇内相似度高,簇间相似度低 二.基本的聚类分析算法 1. K均值(K-Means): 基于原型的.划分的距离技术,它试图发现用户指定个数(K)的簇. 2. 凝聚的层次距离: 思想是开始时,每个点都作为一个单点簇,然后,重复的合并两个最靠近的簇,直到尝…
关键词:Python.调包.线性规划.指派问题.运输问题.pulp.混合整数线性规划(MILP) 注:此文章是线性规划的调包实现,具体步骤原理请搜索具体解法.   本文章的各个问题可能会采用多种调用方法,为什么?因为这些包各有特点,有些语法特别像matlab,只要稍稍改变即可达成代码交换:而有些包利用了python本身的特性,在灵活度与代码的可读性上更高.我认为这些包各有优劣,各位各持所需吧.   看了本文章能做到什么?你可以在本文章内学到线性规划的几个问题的求解方式,并学会如何用pulp包解决…
python实现六大分群质量评估指标(兰德系数.互信息.轮廓系数) 1 R语言中的分群质量--轮廓系数 因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评估(聚类注意事项.使用技巧): 没有固定标准,一般会3-10分群.或者用一些指标评价,然后交叉验证不同群的分群指标. 一般的指标:轮廓系数silhouette(-1,1之间,值越大,聚类效果越好)(fpc包),兰德指数rand:R语言中有一个包用30种方法来评价不同类的方法(NbClust),但是速…
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入是所有数模编程的第一步 编程求解一个数模问题,问题总会涉及一些数据. 有些数据是在题目的文字描述中给出的,有些数据是通过题目的附件文件下载或指定网址提供的,还有些数据是需要自己搜集的.不论是哪种方式获得的数据,也不论哪种类型的问题和算法,首先都是要把这些数据以适当的方式和格式导入到程序中. 如果数据…
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要求 方法 2020A 炉温曲线 建立温度模型,计算炉温曲线,确定最大速度 根据传热学方程建立温度分布机理模型:建立单目标优化模型 微分方程 单目标优化 2019A 高压油管的压力控制 确定不同条件下的控制方案 根据力学方程建立压力变化机理方程:建立单目标优化模型 微分方程 单目标优化 2018A 高…
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 0. 前言:新冠疫情成了数模竞赛的背景帝 新冠疫情爆发以来,不仅严重影响到全球的政治和经济,也深刻和全面地影响着社会和生活的方方面面,甚至已经成为数学建模竞赛的背景帝. 传染病模型本来就是数学建模课程中的常见问题和模型.随着疫情的影响越来越严重.广泛和持久,不仅疫情传播.疫…
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. 欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新 1. 选址问题 选址问题是指在某个区域内选择设施的位置使所需的目标达到最优.选址问题也是一种互斥的计划问题. 例如投资场所的选址:企业要在 m 个候选位置选择若干个建厂,已知建厂费用.运输费及 n 个地区的产品需求量,…