pytorch学习笔记(4)--dataloader】的更多相关文章

thumbnail: https://image.zhangxiann.com/jeison-higuita-W19AQY42rUk-unsplash.jpg toc: true date: 2020/2/19 20:17:25 disqusId: zhangxian categories: PyTorch tags: AI Deep Learning 本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson2/…
原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于python语言的的科学计算包,主要分为两种受众: 能够使用GPU运算取代NumPy 提供最大灵活度和速度的深度学习研究平台 开始 Tensors Tensors与numpy的ndarray相似,且Tensors能使用GPU进行加速计算. 创建5 * 3的未初始化矩阵: 创建并随机初始化矩阵: 创建一…
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07: How to make netural network wide and deep ? Lecture 08: Pytorch DataLoader Lecture 09: softmax Classifier part one part two : real problem - MNIST i…
一.Tensor Tensor是Pytorch中重要的数据结构,可以认为是一个高维数组.Tensor可以是一个标量.一维数组(向量).二维数组(矩阵)或者高维数组等.Tensor和numpy的ndarrays相似. import torch as t 构建矩阵:x = t.Tensor(m, n) 注意这种情况下只分配了空间,并没有初始化. 使用[0,1]均匀分布随机初始化矩阵:x = t.rand(m, n) 查看x的形状:x.size() 加法: (1)x + y (2)t.add(x, y…
记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # All codes and comments from <<深度学习框架Pytorch入门与实践>> # Code url : https://github.com/zhouzhoujack/pytorch-book # lesson_2 : Neural network of PT(Py…
书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and comments from <<深度学习框架Pytorch入门与实践>> # Code url : https://github.com/zhouzhoujack/pytorch-book # lesson_1 : Basic code syntax of PT(Pytorch) im…
一.visdom可视化工具 安装:pip install visdom 启动:命令行直接运行visdom 打开WEB:在浏览器使用http://localhost:8097打开visdom界面 二.使用visdom # 导入Visdom类 from visdom import Visdom # 定义一个env叫Mnist的board,如果不指定,则默认归于main viz = Visdom(env='Mnist') # 在window Accuracy中画train acc和test acc,x…
一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. 上左图中,箭头的长度表示陡峭度,越陡峭的地方箭头越长,箭头指向的方向是y变大的方向,如果要使用梯度下降,则需要取负方向. 右图中,蓝色代表低点,红色代表高点,中间的箭头方向从蓝色指向红色,而且中间最陡峭的地方,箭头最长. 二.梯度下降 上图中分别使用梯度下降优化θ1和θ2的值,α表示学习率,即每次按…
1.要点 Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径. 2.DataLoader DataLoader 是 torch 给你用来包装你的数据的工具. 所以你要讲自己的 (numpy array 或其他) 数据形式装换成 Tensor, 然后再放进这个包装器中. 使用 DataLoader 有什么好处呢? 就是他们帮你有效地迭代数据, 举例: import torch import t…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/linear_regression.py 张量的操作 拼接 torch.cat() torch.cat(tensors, dim=0, out=None) 功能:将张量按照 dim 维度进行拼接 tensors: 张量序列 dim: 要拼接的维度 代码示例: t = torch.ones((2, 3)) t_0 = torch.cat([t, t], d…