深度学习 循环神经网络 LSTM 示例】的更多相关文章

最近在网上找到了一个使用LSTM 网络解决  世界银行中各国 GDP预测的一个问题,感觉比较实用,毕竟这是找到的唯一一个可以正确运行的程序. #encoding:UTF-8 import pandas as pd from pandas_datareader import wb import torch import torch.nn import torch.optim #读取数据 countries = ['BR', 'CA', 'CN', 'FR', 'DE', 'IN', 'IL', '…
目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 4 回测:时间序列交叉验证 5 用 Keras 构建状态 LSTM 模型 结论 时间序列深度学习:状态 LSTM 模型预测太阳黑子 本文翻译自<Time Series Deep Learning: Forecasting Sunspots With Keras Stateful Lstm In R…
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 门控循环神经网络简介 长短期记忆网络(LSTM) 门控制循环单元(GRU) TensorFlow实现LSTM和GRU 参考文献 一.门控循环神经网络 门控循环神经网络在简单循环神经网络的基础上对网络的结构做了调整,加入了门控机制,用来控制神经网络中信息的传递.门控机制可以用来控制记忆单元中的信息有多少需要保留,有多少需要丢弃,新的状态信息又有多少需要保存到记忆单元中等.这…
摘要:本篇文章将分享循环神经网络LSTM RNN如何实现回归预测. 本文分享自华为云社区<[Python人工智能] 十四.循环神经网络LSTM RNN回归案例之sin曲线预测 丨[百变AI秀]>,作者:eastmount. 一.RNN和LSTM回顾 1.RNN (1) RNN原理 循环神经网络英文是Recurrent Neural Networks,简称RNN.假设有一组数据data0.data1.data2.data3,使用同一个神经网络预测它们,得到对应的结果.如果数据之间是有关系的,比如…
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源代码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度.基础方面的非常多,随便看看就能够,仅仅是非常多没有把细节说得清楚和明确: 能把细…
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU).谷歌(TPU).NVidia(GPU).华为和寒武纪,发现所有的AI芯片都支持TensorFlow框架. 从收集到的信息来看: 1.目前TensorFlow在智能边缘计算中是主流,例如TensorFlow提供了移动端应用开发API,参考资料中包含了示例. 2.AI芯片对深度学习的加速效果,其中NVI…
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 3实例 3.1 測试数据 依照上例数据,或者新建图片识别数据. 3.2 CNN实例    //2 測试数据    Logger.getRootLogger.setLevel(Level.WARN)    valdata_p…
一.RNN 1.定义 递归神经网络(RNN)是两种人工神经网络的总称.一种是时间递归神经网络(recurrent neural network),另一种是结构递归神经网络(recursive neural network).时间递归神经网络的神经元间连接构成矩阵,而结构递归神经网络利用相似的神经网络结构递归构造更为复杂的深度网络.RNN一般指代时间递归神经网络. 2.recurrent neural network原理 上面的图片是一个简单的RNN结构模块.Xt表示输入数据,A表示正在处理数据,…
本文作者 Nikolai Yakovenko 毕业于哥伦比亚大学,目前是 Google 的工程师,致力于构建人工智能系统,专注于语言处理.文本分类.解析与生成. 生成式对抗网络-简称GANs-将成为深度学习的下一个热点,它将改变我们认知世界的方式. 准确来讲,对抗式训练为指导人工智能完成复杂任务提供了一个全新的思路,某种意义上他们(人工智能)将学习如何成为一个专家. 举个对抗式训练的例子,当你试图通过模仿别人完成某项工作时,如果专家都无法分辨这项工作是你完成的还是你的模仿对象完成的,说明你已经完…