hdu2516斐波那契博弈】的更多相关文章

刚开始想用sg函数做,想了半天没一点思路啊. 原来这是一个新题型,斐波那契博弈 斐波那契博弈模型:有一堆个数为 n 的石子,游戏双方轮流取石子,满足:1. 先手不能在第一次把所有的石子取完:2. 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍).约定取走最后一个石子的人为赢家,求必败态.  n = 2时输出second:      n = 3时也是输出second:  n = 4时,第一个人想获胜就必须先拿1个,这时剩余的石子数为3,此时无论第二个人如何…
http://acm.hdu.edu.cn/showproblem.php?pid=2516 取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6603    Accepted Submission(s): 3987 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 题目: Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win".先取者胜输出"First win".   Input 输入有多组.每组第1行是2<=n<2^31. n=0退出.   Output 先取者负输…
题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐波那契数的和. 一.归纳法证明斐波那契数列是必败点 为了方便,我们将n记为f[i]. 1.当i=2时,先手只能取1颗,显然必败,结论成立. 2.假设当i<=k时,结论成立. 则当i=k+1时,f[i] = f[k]+f[k-1]. 则我们可以把这一堆石子看成两堆,简称k堆和k-1堆. (一定可以看成…
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2101 Accepted Submission(s): 1205 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Secondwin".先取者…
斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍). 约定取走最后一个石子的人为赢家,求必败态. 证明 FBI数为必败局: 1.对于任意一个FBI数 FBI[K]=FBI[K-1]+FBI[K-2],我们可以将FBI[K]看成石子数目分别是FBI[K-1],FBI[K-2]的两堆(一定可以这样分,因为FBI[K-1] > FBI[K-2]*2,若先…
题意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍. 取完者胜,先取者负输出"Second win",先取者胜输出"First win". 思路:很明显这是一个斐波那契博弈,当且仅当 n 为斐波那契数时先手必败 代码: #include <iostream> using namespace std; int main() { int n; ]; f[]=; f[]=; ;i<;i…
题目描述 N个石子,A和B轮流取,A先.每个人每次最少取一个,最多不超过上一个人的个数的2倍.取到最后一个石子的人胜出,如果A要有必胜策略,第一次他至少要取多少个. 输入 第一行给出数字N,N<=10^15.第二行N个数字 输出 如题 样例输入 4 样例输出 1   根据齐肯多夫定理,任何一个正整数都能由若干个不连续的斐波那契数表示. 那么这个博弈就可以分成若干个斐波那契博弈(斐波那契博弈详见博弈论讲解). A只要第一次取走n被表示的最小斐波那契数,那么B就变成了先手.A变成了后手. 这时B无法…
博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时先手的人可以一次取走所有的: 当$n=m+1$时,这时先手无论取走多少个,后手的人都能取走剩下所有的: 当$n=k*(m+1)$时,对于每$m+1$个石子,先手取$i$个,后手一定能将剩下的$(m+1-i)$个都取走,因此后手必胜: 当$n=k*(m+1)+x(0<x<m+1)$时,先手可以先取$…
(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.若(m+1) | n,则先手必败,否则先手必胜.显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜.因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,…