传送门 思路 这思路好妙啊! 首先很多人都会想到推式子之后树链剖分+线段树,但这样不够优美,不喜欢. 脑洞大开想到这样一个式子: \[ \sum_{x} sum_x(All-sum_x) \] 其中\(sum_x\)表示\(x\)子树和,\(All\)表示所有点的权值和. 发现不管哪个点为根,只要每个点的权值不变,这个式子的值就不变. 证明:对于点对\((u,v)\),\(w_u\times w_v\)被算了\(dis(u,v)\)次,因为每个在路径上的\(x\)都会算一次. 于是就有 \[ W…
题目链接 洛谷P3676 题解 我们先维护\(1\)为根的答案,再考虑换根 一开始的答案可以\(O(n)\)计算出来 考虑修改,记\(s[u]\)表示\(u\)为根的子树的权值和 当\(u\)节点产生\(v\)的增量时,只影响\(1\)到\(u\)路径上的\(s\),权值和都\(+v\) 而对答案的影响是 \[ \begin{aligned} \Delta ans &= \sum\limits_{i}^{k}(s_i + v)^{2} - \sum\limits_{i = 1}^{k} s_i^…
洛谷题面传送门 题目名称好评(实在是太清新了呢) 首先考虑探究这个"换根操作"有什么性质.我们考虑在换根前后虽然每个点的子树会变,但整棵树的形态不会边,换句话说,割掉每条边后,得到的两个子树的中点权之和不会变,因此我们考虑将这个东西与平方和挂钩.考虑构造 \(S=\sum\limits_{i=1}^nsiz_i(sum-siz_i)\),其中 \(siz_i\) 为 \(i\) 子树内所有点点权之和,\(sum\) 为所有点点权之和.那么不难发现 \(S\) 就是断掉所有点之后形成的两…
题目背景 本题时限2s,内存限制256M 题目描述 在很久很久以前,有一棵n个点的树,每个点有一个点权. 现在有q次操作,每次操作是修改一个点的点权或指定一个点,询问以这个点为根时每棵子树点权和的平方和. (题目不是很好懂,没看太懂的可以看看样例解释) 输入输出格式 输入格式: 第一行两个整数n.q. 接下来n-1行每行两个整数a和b,表示树中a与b之间有一条边,保证给出的边不会重复. 接下来一行n个整数,第i个整数表示第i个点的点权. 接下来q行每行两或三个数,如果第一个数为1,那么接下来有两…
传送门 感觉这题做下来心态有点崩……$RMQ$求$LCA$没有树剖快我可以理解为是常数太大……然而我明明用了自以为不会退化的点分然而为什么比会退化的点分跑得反而更慢啊啊啊啊~~~ 先膜一波zsy大佬 讲讲做法.题目的要求是给定一个根$p$,求$\sum _{i=1}^ns_i^2$,其中$s_i$表示子树中的点权和 我们设$sum=\sum _{i=1}^n val_i$,即整棵树的点权和.先考虑一下$\sum _{i=1}^ns_i$怎么求.考虑一下每一个点的贡献,每一个点都会对被计算$dep…
https://www.luogu.org/problemnew/show/P3676 这题被我当成动态dp去做了,码了4k,搞了一个换根的动态dp #include<cstdio> #include<algorithm> #include<cstring> using namespace std; typedef long long ll; struct E { int to,nxt; }e[]; ],ne; struct P1 { int len;ll a,b,c,…
传送门 换根类型的统计问题动态点分治都是很好做的. 设所有点的点权和为$sum$ 首先,我们先不考虑求$\sum\limits_i s_i^2$,先考虑如何在换根的情况下求$\sum\limits_i s_i$. 考虑一个点$i$会被统计多少次,显然是$dep_i+1$,那么$\sum\limits_i s_i = \sum\limits_i (dep_i+1) \times val_i = \sum\limits_i dep_i \times val_i + sum$. $\sum\limit…
传送门 题意:给定自然数n.k.x,你要求出第k小的长度为n的逆序对对数为x的1~n的排列 $n \le 300, k \le 10^13$ 一下子想到hzc讲过的DP 从小到大插入,后插入不会对前插入造成影响,$f[i][j]$表示$1..n$排列$j$个逆序对的方案数,枚举插在哪里 然后从前向后选择满足要求的字典序最小的构造就行了 一开始没注意$DP$方程是$O(n^4)$的T了一次,以后一定要跑一下极限数据 加上前缀和优化 然后会爆long long,但我们只关心与k相比大小,所以$>k$…
Description: 给你一棵树,每次询问以一个点为根时所有子树点权和的平方和 带修改 Hint: \(n\le 2*10^5\) Solution: 这题只要推出式子就很简单了 如果不换根这个平方和树剖直接做就行了 考虑换根的影响了哪些点的贡献 显然只影响了\(1\)到\(u\)的路径上的点 把1到\(u\)这条路径上的点依次标记为\(1,2,3......k\) 我们设\(a_i\)为以1为根时\(i\)的点权和,\(b_i\)为以\(u\)为根的点权和 \(Ans=ans_1-\sum…
题目描述 题目还是简单一点好. 给定自然数n.k.x,你要求出第k小的长度为n的逆序对对数为x的1~n的排列a1,a2...an,然后用仙人图上在线分支定界启发式带花树上下界最小费用流解决问题,保证存在. 输入格式 一行三个自然数n.k.x. 输出格式 输出满足条件的排列,一行n个数,用空格分隔. 题目都说了:用仙人图上在线分支定界启发式带花树上下界最小费用流解决问题就可以了 看数据范围猜是DP...... 我们可以用$f[i][j]$表示序列长度为i,其中有j对逆序对时的可能组数,转移也很显然…
题目大意 有一棵有\(n\)(\(n\leq 2*10^5\))个点的树,要进行\(q\)(\(q\leq 2*10^5\))次操作,每次操作是以下两种中的一种: 1.修改一个点的点权 2.指定一个点\(x\),将该点变成根,并询问此时所有点的子树点权和之平方和 题解 设\(w_i\)表示以1号点为根时,点\(i\)的子树点权和 1操作可以看成将点\(x\)到1号点的路径上的\(w\)都加上\(y\) 假设点\(x\)到\(1\)的路径上的点是\(a_1,a_2,...a_b\),那么所有\(w…
4012: [HNOI2015]开店 Time Limit: 70 Sec  Memory Limit: 512 MBSubmit: 2168  Solved: 947[Submit][Status][Discuss] Description 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到 人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱.这样的 想法当然非常好啦,但是她们也发现她们面临着一个问题,那就是店开在哪里,面 向什么样的人群.很神奇的是,幻想乡的地…
[Luogu3676]小清新数据结构题(动态点分治) 题面 洛谷 题解 先扯远点,这题我第一次看的时候觉得是一个树链剖分+线段树维护. 做法大概是这样: 我们先以任意一个点为根,把当前点看成是一棵有根树.比方说以\(1\)为根. 那么,在询问以\(p\)为根的时候的答案,我们看看哪些子树发生了变化. 发现真正会产生变化的只有\(1..p\)这条链上的所有点,其它点的贡献和以\(1\)为根时的贡献是一样的. 考虑这条链上的所有点的贡献变成了什么,假设这条链上的所有点分别是\(c_1,c_2...,…
题面 传送门 思路 本来以为这道题可以LCT维护子树信息直接做的,后来发现这样会因为splay形态改变影响子树权值平方和,是splay本身的局限性导致的 所以只能另辟蹊径 首先,我们考虑询问点都在1的情况 考虑一次修改带来的影响: 假设当前节点的值变动量为$delta$,修改节点为$u$ 那么对于所有位于路径$(1,u)$上的节点而言,它们的子树和以及子树平方和都会有改变 设$sum(u)$表示子树点权和,$sumsqr(u)$表示点权和的平方 那么$\forall v \in (1,u)$,$…
(点击这里查看原题,不保证可以进去....外网可能比较卡) Description A:一心一意 B:一个顶俩 最近QQ更新后那个成语接龙好像挺火的?但我只知道图论里一条边是一个顶俩个点的emm. 如果我给你一个n个点n-1条边的无向联通图,但是这里头有一些边是脆弱的.随时都面临崩坏的危险. 为了维持他们的连通性,善良的我又给了你m条紫水晶备用边(u,v).我这里准备Q个问题,第i个问题为一个整数z(1≤z≤n−1)表示若第z条边崩坏了,你能选出多少条备用边保证图继续保持联通. Input 第一…
传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ,这三个操作分别为操作1,2,3 题面太强啦!!! 感觉就是莫队,想了一下分块不好搞更坚定了莫队的信念 $a-b=x$,$a=x+b$,放在权值数组上就是b右移x位,$bitset$大法好 加法同理 乘法,总共就$\sqrt{N}$个约数.... 感觉复杂度$O(\frac{N^2}{64} + N…
题面戳我 题意:给一棵树,树上有点权,每次操作为修改一个点的点权,或者是询问以某个点为根时,每棵子树(以每个点为根,就有n棵子树)点权和的平方和. \(n\le2*10^5\),保证答案在long long范围内 sol 我们设\(s_i\)表示以\(p\)为整棵树的根时,以\(i\)为根的子树的点权和.设\(Sum\)表示所有点的点权和,即\(Sum=\sum_{i=1}^{n}val_i\). 所以这道题给出\(p\),就是要你求\(\sum_{i=1}^{n}s_i^2\). 我们先看\(…
题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n)枚举查找了. 然后我们用bitset优化一下......外面套上莫队来维护桶. 具体来说,差为x可以写成 a - b = x 然后我们把bitset左移/右移x位,与原来的and一下,看是否有元素为1即可. 和为x可以写成 a + b = x   N - a - b = N - x   (N - a)…
先不考虑换根.考虑修改某个点权值对答案的影响.显然这只会改变其祖先的子树权值和,设某祖先原子树权值和为s,修改后权值增加了x,则对答案的影响为(s+x)2-s2=2sx+x2.可以发现只要维护每个点到根的路径的子树和之和就可以了,随便树剖一波. 对于换根,可以发现这也只会改变其祖先的子树权值和.设原本的根到要换的根这段路径上的点子树权值和依次为S.s1.s2……sn,则换根后其依次为S-s1.S-s2……S-sn.S,答案变化量为(S-s1)2-S2+……+S2-sn2=(S-s1)2-s12+…
推荐博客: http://www.cnblogs.com/Mychael/p/9257242.html 感觉还挺好玩的 首先考虑以1为根,把每一个点子树的权值和都算出来,记为$val_{i}$,那么在所有操作都没有开始的时候(以$1$为根的)$ans_{1} = \sum_{i= 1}^{n}val_{i}^{2}$ 考虑到一个修改的操作只会对修改的点$x$到根($1$)链上的点产生影响,那么一次修改只要修对这条树链上的点增加$v - a_{x}$(假设修改后的值为$v$)就好了. 链剖之后线段…
传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2$(就是每一位代表的是$N-x$),干吗用等下说 1操作的话,因为每一个位置代表一个数字,如果存在$z-y=x$,可以转化为同时存在$z$和$z-x$,那么把$now1$左移$x$位并与$now1$做$\&$运算,看看是否等于$0$,如果不是说明不存在 2操作的话,$now2$中的$y'$代表数字$…
想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队,其实是别人告诉我的,分块不太好弄. 减法:\[a-b=x => a=x+b\]就是在权值数组上右移x位. 加法同理. 至于乘法,直接暴力找因子,反正是\(\sqrt{n}\)复杂度. 时间复杂度显然是:\(O(\)能过\()\) code: #include <bits/stdc++.h>…
传送门 Description 有一棵\(n\)个点的树,每个点有一个点权. 现在有\(q\)次操作,每次操作是修改一个点的点权或指定一个点,询问以这个点为根时每棵子树点权和的平方和. Solution 我们设\(Sum=\sum_{i=1}^{n} w_i\),\(s_i\)表示\(i\)子树的权值和 发现不管根是哪个节点,\(W=\sum_{i=1}^n s_i(Sum-s_i)\)都是一个定值 因为它相当于对于每条边连接的两个联通块的"点权和的积"的和 所以,我们要求的\(\su…
前言 其实我只是为了过掉模板而写的ddp,实际应用被吊着锤 Solution 并不想写详细的过程 一句话过程:将子树中轻儿子的贡献挂到这个点上面来 详细版:(引用yyb) 总结一下的话,大致的过程是这样子的:首先我们考虑我们的转移方程,发现能够将其改写为矩乘的形式,那么我们首先将转移改为矩乘.我们把轻链和重链的转移分开考虑.这样子想,我们的重链被我们单独拎了出来,每个重链上都挂上了若干轻儿子,显然轻儿子对于重链上的独立集的选择是没有影响的,换而言之,如果轻儿子的贡献考虑完之后,那么等价于链上每个…
[注意事项] 为了体现增强版,题目限制和数据范围有所增强: 时间限制:1.5s 内存限制:128MB 对于15% 的数据,1<=N,Q<=1000. 对于35% 的数据,1<=N,Q<=10000. 对于50% 的数据,1<=N,Q<=100000,且数据均为官方数据. 对于100% 的数据,1<=N,Q<=1000000. 请注意常数因子对于程序运行的影响. 并查集很简单,并查集就是倒序处理,表示删除一个点的标记,删除后不会再加回来,删完后,合并当前点与其…
以每个一个颜色开一颗线段树,内部以dfs序作为线段树节点,权值代表出现次数,维护线段树区间和 #include<iostream> #include<stdio.h> #include<string.h> #include<algorithm> #include<map> using namespace std; ; struct edge{ int next,to; }e[maxn*]; struct node{ int l,r; int w;…
洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品. 输入输出格式 输入格式: 两个正整数 a 和 b,它们之间用一个空格隔开,表示小凯中金币的面值. 输出格式: 一个正整数 N,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值. 输入…
洛谷 P5596 [XR-4]题 洛谷传送门 题目描述 小 X 遇到了一道题: 给定自然数 a,ba,b,求满足下列条件的自然数对 (x,y)(x,y) 的个数: y^2 - x^2 = ax + by2−x2=*a**x+b* 他不会,只好求助于精通数学的你. 如果有无限多个自然数对满足条件,那么你只需要输出 inf 即可. 输入格式 一行两个整数 a,ba,b. 输出格式 如果个数有限,一行一个整数,表示个数. 如果个数无限,一行一个字符串 inf. 输入输出样例 输入 #1复制 输出 #1…
洛谷1120 小木棍 题目描述 乔治有一些同样长的小木棍,他把这些木棍随意砍成几段,直到每段的长都不超过50.     现在,他想把小木棍拼接成原来的样子,但是却忘记了自己开始时有多少根木棍和它们的长度.     给出每段小木棍的长度,编程帮他找出原始木棍的最小可能长度. 输入输出格式 输入格式: 输入文件共有二行. 第一行为一个单独的整数N表示砍过以后的小木棍的总数,其中N≤60 (管理员注:要把超过50的长度自觉过滤掉,坑了很多人了!) 第二行为N个用空个隔开的正整数,表示N根小木棍的长度.…
洛谷1373 小a和uim之大逃离 本题地址:http://www.luogu.org/problem/show?pid=1373 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个披头散发.青面獠牙的怪物,低沉着声音说:“呵呵,既然你们来到这,只能活下来一个!”.小a和他的小伙伴都惊呆了! 题目描述 瞬间,地面上出现了一个n*m的巨幅矩阵,矩阵的…