Flink - allowedLateness】的更多相关文章

WindowOperator processElement final Collection<W> elementWindows = windowAssigner.assignWindows( //找出该element被assign的所有windows element.getValue(), element.getTimestamp(), windowAssignerContext); //if element is handled by none of assigned elementWin…
Flink 学习 https://github.com/zhisheng17/flink-learning 麻烦路过的各位亲给这个项目点个 star,太不易了,写了这么多,算是对我坚持下来的一种鼓励吧! 本项目结构 2019/06/08 新增 Flink 四本电子书籍的 PDF,在 books 目录下: Introduction_to_Apache_Flink_book.pdf 这本书比较薄,处于介绍阶段,国内有这本的翻译书籍 Learning Apache Flink.pdf 这本书比较基础,…
Watermartks是通过additional的时间戳来控制窗口激活的时间,allowedLateness来控制窗口的销毁时间.   注: 因为此特性包括官方文档在1.3-1.5版本均未做改变,所以此处使用1.5版的文档       在EventTime的情况下,          1. 一条记录的事件时间来控制此条记录属于哪一个窗口,Watermarks来控制这个窗口什么时候激活.     2. 假如一个窗口时间为00:00:00-00:00:05,Watermarks为5秒,那么当flin…
  参考, http://wuchong.me/blog/2016/05/25/flink-internals-window-mechanism/ http://wuchong.me/blog/2016/06/06/flink-internals-session-window/    WindowOperator window operator通过WindowAssigner和Trigger来实现它的逻辑 当一个element到达时,通过KeySelector先assign一个key,并且通过W…
窗口(Window) 本文翻译自文档Windows ----------------------------------- Flink使用窗口的概念,根据element的时间戳或者其他指标,将可能无限的DataStream分割为有限的数据切片(slice).我们在处理无限数据流以及进行聚合element的transformation时需要此种窗口分割. 注意:我们在此文档中讨论的大多是keyed windowing,即window是应用在KeyedStream上的.关键字下的窗口具有一定的优势,…
Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作.本文主要聚焦于在Flink中如何进行窗口操作,以及程序员如何从window提供的功能中获得最大的收益. 窗口化的Flink程序的一般结构如下,第一个代码段中是分组的流,而第二段是非分组的流.正如我们所见,唯一的区别是分组的stream调用keyBy(…)和window(…),而非分组的stream中window()换成了windowAll(…),这些也将贯穿…
摘自Apache Flink官网 最早的streaming 架构是storm的lambda架构 分为三个layer batch layer serving layer speed layer 一.在streaming中Flink支持的通知时间 Flink官网写了个了解streaming和各种时间的博客 https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101#F2 1.Processing time:执行时候的机器系统时…
在WindowedStream上可以执行,如reduce,aggregate,min,max等操作 关键是要理解windowOperator对KVState的运用,因为window是用它来存储window buffer的 采用不同的KVState,会有不同的效果,如ReduceState,ListState   Reduce   /** * Applies the given window function to each window. The window function is calle…
Windows是Flink流计算的核心,本文将概括的介绍几种窗口的概念,重点只放在窗口的应用上. 本实验的数据采用自拟电影评分数据(userId, movieId, rating, timestamp),userId和movieId范围分别为1-100和1-200的随机数,rating范围为[0:0.5:5.0]一共10个档位,timestamp为10000-20000之间的随机数,且数据顺序采用timestamp的升序排列.(2.1-2.6节的数据是乱序) 一.窗口(window)的类型 对于…
转发请注明原创地址 http://www.cnblogs.com/dongxiao-yang/p/7610412.html 一 概念 watermark是flink为了处理eventTime窗口计算提出的一种机制,本质上也是一种时间戳,由flink souce或者自定义的watermark生成器按照需求定期或者按条件生成一种系统event,与普通数据流event一样流转到对应的下游operations,接收到watermark数据的operator以此不断调整自己管理的window event…