NPOI操作Excel 踩坑记】的更多相关文章

1 读取Excel并修改单元格 a.一定不能一边读数据,一边修改单元格,否则读出来的数据可能不准 b.注意写文件的模式,不然修改后的文件,打开会报错. c.清空单元格的数据,可以调用SetCellType(CellType.Blank); public void ReadXlsx() { XSSFWorkbook workbook = null; string fileName = @"C:\***\09DataLayer\MainTest\documents\xxx.xlsx"; u…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
[TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streaming进行实时的数据流处理时,我需要将计算好的数据更新到hbase和mysql中,所以本文对spark操作hbase和mysql的内容进行总结,并且对自己踩到的一些坑进行记录. Spark Streaming持久化设计模式 DStreams输出操作 print:打印driver结点上每个Dstream…
[TOC] 前言 Spark踩坑记--初试 Spark踩坑记--数据库(Hbase+Mysql) Spark踩坑记--Spark Streaming+kafka应用及调优 在前面总结的几篇spark踩坑博文中,我总结了自己在使用spark过程当中踩过的一些坑和经验.我们知道Spark是多机器集群部署的,分为Driver/Master/Worker,Master负责资源调度,Worker是不同的运算节点,由Master统一调度,而Driver是我们提交Spark程序的节点,并且所有的reduce类…
[TOC] 前言 在Spark的使用中,性能的调优配置过程中,查阅了很多资料,之前自己总结过两篇小博文Spark踩坑记--初试和Spark踩坑记--数据库(Hbase+Mysql),第一篇概况的归纳了自己对spark的初步尝试,第二篇更多是局部在spark对于数据库的操作,而本文的思路是从spark最细节的本质,即核心的数据结构RDD出发,到整个Spark集群宏观的调度过程做一个整理归纳,从微观到宏观两方面总结,方便自己在调优过程中找寻问题,理清思路,也加深自己对于分布式程序开发的理解.(有任何…
https://cloud.tencent.com/developer/article/1004820 Spark 踩坑记:数据库(Hbase+Mysql) 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值. 最近一个实时消费者处理任务,在使用spark streaming进行实时的数据流处理时,我需要将计算好的数据更新到hbase和mysql中,所以本文对spark操作hbase和mysql的内容进行总结,并且对自己…
转自:http://www.cnblogs.com/xlturing/p/spark.html 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streaming进行实时的数据流处理时,我需要将计算好的数据更新到hbase和mysql中,所以本文对spark操作hbase和mysql的内容进行总结,并且对自己踩到的一些坑进行记录. Spark Streaming持久化设计…
@Transactional踩坑记 总述 ​ Spring在1.2引入@Transactional注解, 该注解的引入使得我们可以简单地通过在方法或者类上添加@Transactional注解,实现事务控制. 然而看起来越是简单的东西,背后的实现可能存在很多默认规则和限制.而对于使用者如果只知道使用该注解,而不去考虑背后的限制,就可能事与愿违,到时候线上出了问题可能根本都找不出啥原因. 踩坑记 1. 多数据源 事务不生效 背景介绍 ​ 由于数据量比较大,项目的初始设计是分库分表的.于是在配置文件中…
前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计. 本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka 在舆情项目中的应用,最后将自己在Spark Streaming+kafka 的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补…
windows container 踩坑记 Intro 我们有一些服务是 dotnet framework 的,不能直接跑在 docker linux container 下面,最近一直在折腾把它部署在 windows container 下,折腾的有点恶心,记录一下. Windows Container 介绍 Windows Container 是微软在 Windows 上的虚拟化实践,它可以提供操作系统级别的虚拟化. 通过我们说的容器化大多是指 Linux Container,基于 linu…