人脸识别68个点<转>】的更多相关文章

[Opencv] 于仕琪 人脸68个特征点分布情况 // 鼻尖 30 // 鼻根 27 // 下巴 8 // 左眼外角 36 // 左眼内角 39 // 右眼外角 45 // 右眼内角 42 // 嘴中心 66 // 嘴左角 48 // 嘴右角 54 // 左脸最外 0 // 右脸最外 16 https://blog.csdn.net/zj360202/article/details/78674700 -----------------------------------------------…
0.引言 介绍利用Dlib官方给的人脸识别预测器"shape_predictor_68_face_landmarks.dat"进行68点标定,利用OpenCv进行图像化处理,在人脸上画出68个点,并标明序号. 1.开发环境 python: 3.6.3 dlib: 19.7 OpenCv, PIL, numpy 需要调用的库: import dlib #人脸识别的库dlib import numpy as np #数据处理的库numpy import cv2 #图像处理的库OpenCv…
最近帮别人做一个项目,主要是使用摄像头做人脸识别 github地址:https://github.com/qugang/AVCaptureVideoTemplate 要使用IOS的摄像头,需要使用AVFoundation 库,库里面的东西我就不介绍. 启动摄像头需要使用AVCaptureSession 类. 然后得到摄像头传输的每一帧数据,需要使用AVCaptureVideoDataOutputSampleBufferDelegate 委托. 首先在viewDidLoad 里添加找摄像头设备的代…
opencv中提供的基于haar特征级联进行人脸检测的方法效果非常不好,本文使用dlib中提供的人脸检测方法(使用HOG特征或卷积神经网方法),并使用提供的深度残差网络(ResNet)实现实时人脸识别,不过本文的目的不是构建深度残差网络,而是利用已经训练好的模型进行实时人脸识别,实时性要求一秒钟达到10帧以上的速率,并且保证不错的精度.opencv和dlib都是非常好用的计算机视觉库,特别是dlib,前面文章提到了其内部封装了一些比较新的深度学习方法,使用这些算法可以实现很多应用,比如人脸检测.…
一.介绍 我想做的是基于人脸识别的表情(情绪)分析.看到网上也是有很多的开源库提供使用,为开发提供了很大的方便.我选择目前用的比较多的dlib库进行人脸识别与特征标定.使用python也缩短了开发周期. 官网对于dlib的介绍是:Dlib包含广泛的机器学习算法.所有的设计都是高度模块化的,快速执行,并且通过一个干净而现代的C ++ API,使用起来非常简单.它用于各种应用,包括机器人技术,嵌入式设备,手机和大型高性能计算环境. 虽然应用都比较高大上,但是自己在PC上做个情绪分析的小软件还是挺有意…
[深度应用]·实战掌握Dlib人脸识别开发教程 个人网站--> http://www.yansongsong.cn/ 项目GitHub地址--> https://github.com/xiaosongshine/dlib_face_recognition 1.背景介绍 Dlib是一个深度学习开源工具,基于C++开发,也支持Python开发接口,功能类似于TensorFlow与PyTorch.但是由于Dlib对于人脸特征提取支持很好,有很多训练好的人脸特征提取模型供开发者使用,所以Dlib人脸识…
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领域,如军事,进入,公共安全和日常生活.FR自然在CVPR会议中也占据了十分长的时间.早在1990年代,随着特征脸的提出[157],FR就成为了一个比较热门的研究领域.过去基于特征进行FR的里程碑方法在图1中有所展示 如图1所示,其中介绍了4个主流技术的发展过程: holistic 方法:通过某种分布假设去直接…
环境要求: Ubuntu17.10 Python 2.7.14 环境搭建: 1. 安装 Ubuntu17.10 > 安装步骤在这里 2. 安装 Python2.7.14 (Ubuntu17.10 默认Python版本为2.7.14) 3. 安装 git .cmake . python-pip # 安装 git $ sudo apt-get install -y git # 安装 cmake $ sudo apt-get install -y cmake # 安装 python-pip $ sud…
Python3+Dlib实现简单人脸识别案例 写在前边 很早很早之前,当我还是一个傻了吧唧的专科生的时候,我就听说过人脸识别,听说过算法,听说过人工智能,并且也出生牛犊不怕虎般的学习过TensorFlow,结果嘞,被虎啃得连渣都不剩!从此再也不敢接触算法和人工智能了... 但是!BUT!在自己经历的事情多了之后,在受打击到习以为常了之后, 在努力半天仍旧一事无成之后,你就会悟出一个道理  ——  老子从未成功过,又怕哪门子失败! 所以,对数学一窍不通的我,毅然决然的再次走上了一条不归路 ....…
不断维护的地址:http://plzcoding.com/face-recognition-with-opencv/ 怎样使用OpenCV进行人脸识别 本文大部分来自OpenCV官网上的Face Reconition with OpenCV这节内容(http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html),小弟我尝试翻译一些重要内容.这部分内容是Philipp Wagner写的,他的github:https…