【SPOJ】Transposing is even more fun!】的更多相关文章

题意: 给出a.b 表示按先行后列的方式储存矩阵 现在要将其转置 可以交换两个点的位置 求最小操作次数 题解: 储存可以将其视为拉成一条链 设a=5.b=2 则在链上坐标用2^***(a,b)表示为(xxxxxyy) 转置后为(yyxxxxx) 这时将其视为另一个点的坐标 继续转置为(xxyyxxx)... 直到再变成(xxxxxyy)这样每次循环可以节省1次转置 所以ans=2^(a+b)-k k为循环的个数k的计算:右移b位 右移b*2位 右移b*3位... 构成了一个置换群 置换个数为(a…
[SPOJ]NUMOFPAL - Number of Palindromes(Manacher,回文树) 题面 洛谷 求一个串中包含几个回文串 题解 Manacher傻逼题 只是用回文树写写而已.. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<…
[SPOJ]Substrings(后缀自动机) 题面 Vjudge 题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次 题解 出现次数很好处理,就是\(right/endpos\)集合的大小 那么,直接构建\(SAM\) 求出每个位置的\(right\)集合大小 直接更新每个节点的\(longest\)就行了 最后短的可以由长的更新过来就好 #include<iostream> #include<cstdio> #include<cs…
[SPOJ]Longest Common Substring II (后缀自动机) 题面 Vjudge 题意:求若干个串的最长公共子串 题解 对于某一个串构建\(SAM\) 每个串依次进行匹配 同时记录\(f[i]\)表示走到了\(i\)节点 能够匹配上的最长公共子串的长度 当然,每个串的\(f[i]\)可以更新\(f[i.parent]\) 所以需要拓扑排序 对于每个串求出每个节点的最长匹配 然后对他们取\(min\),表示某个节点大家都能匹配的最长长度 最后对于所有点的值都取个\(max\)…
[SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另外一个串在\(SAM\)上不断匹配 最后计算答案就好了 匹配方法: 如果\(trans(s,c)\)存在 直接沿着\(trans\)走就行,同时\(cnt++\) 否则沿着\(parent\)往上跳 如果存在\(trans(now,c),cnt=now.longest+1\) 否则,如果不存在可行的…
[SPOJ]Distinct Substrings(后缀自动机) 题面 Vjudge 题意:求一个串的不同子串的数量 题解 对于这个串构建后缀自动机之后 我们知道每个串出现的次数就是\(right/endpos\)集合的大小 但是实际上我们没有任何必要减去不合法的数量 我们只需要累加每个节点表示的合法子串的数量即可 这个值等于\(longest-shortest+1=longest-parent.longest\) #include<iostream> #include<cstdio&g…
[SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题目 其实很容易: 总方案-不合法方案数 对于串进行后缀排序后 不合法方案数=相邻两个串的不合法方案数的和 也就是\(height\)的和 所以\[ans=\frac{n(n+1)}{2}-\sum_{i=1}^{len}height[i]\] #include<iostream> #include…
[SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set…
[SPOJ419]Transposing is Fun 题意:给你一个$2^a\times2^b$的矩阵,将$1...n$中的数依次从左到右,从上往下填到矩阵里,再把矩阵转置,然后把所有数从左到右,从上往下拿出来得到一个新的排列$A$.你现在每次可以交换两个数,问你从$1...n$变成排列$A$最少要进行多少次操作. 询问次数$\le400000,a+b\le 10^6$ 题解:首先我们可以找到所有的循环节,如果一个循环节中有$x$个数,需要交换$x-1$次.所以我们只需要求出循环节的个数$k$…
[SPOJ]QTREE7(Link-Cut Tree) 题面 洛谷 Vjudge 题解 和QTREE6的本质是一样的:维护同色联通块 那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\) 每次只修改和它父亲的连边. 考虑如何维护最大值 因为每次\(access\)会删去一个数,所以我们肯定不能够只维护最大值. 因此,对于每一个节点,额外维护一个\(multiset\)(当然,可删堆,\(map\)之类的也行) 每次用\(multiset\)维护虚子树的最值,拿过去更新即可. 最后的答案…