Spark生态之Spark Graphx】的更多相关文章

spark 生态及运行原理 Spark 特点 运行速度快 => Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算.官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapReduce的10倍以上,如果数据从内存中读取,速度可以高达100多倍. 适用场景广泛 => 大数据分析统计,实时数据处理,图计算及机器学习 易用性 => 编写简单,支持80种以上的高级算子,支持多种语言,数据源丰富,可部署在多种集群中 容错性高.Spark引进了弹性分布式数据集RDD (Resil…
----本节内容------- 1.Spark背景介绍 2.Spark是什么 3.Spark有什么 4.Spark部署 4.1.Spark部署的2方面 4.2.Spark编译 4.3.Spark Standalone部署 4.4.Standalone HA配置 4.5.伪分布式部署 5.Spark任务提交 5.1.Spark-shell 5.2.Spark-submit 6.参考资料 --------------------- 1.Spark背景介绍 Spark是AMLab实验室贡献出的代码,是…
LDA背景 LDA(隐含狄利克雷分布)是一个主题聚类模型,是当前主题聚类领域最火.最有力的模型之中的一个,它能通过多轮迭代把特征向量集合按主题分类.眼下,广泛运用在文本主题聚类中. LDA的开源实现有非常多.眼下广泛使用.可以分布式并行处理大规模语料库的有微软的LightLDA,谷歌plda.plda+,sparkLDA等等. 以下介绍这3种LDA: LightLDA依赖于微软自己实现的multiverso參数server.server底层使用mpi或zeromq发送消息. LDA模型(word…
什么是Spark Streaming Spark Streaming类似于Apache Storm,用于流式数据的处理 Spark Streaming有高吞吐量和容错能力强等特点.Spark Streaming支持的数据输入源很多,例如:Kafka.Flume.Twitter.ZeroMQ和简单的TCP套接字等等 数据输入后可以用Spark的高度抽象原语如:map.reduce.join.window等进行运算.而结果也能保存在很多地方,如HDFS,数据库等 Spark Streaming也能和…
1.1 什么是Spark ​ Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. ​ 一站式管理大数据的所有场景(批处理,流处理,sql) ​ spark不涉及到数据的存储,只做数据的计算 ​ Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行计算框架,Spark拥有Hadoop MapReduce所具有的优点: ​ 但不同于MapReduce的是Job中间输出结果可以保存在内存中,…
What Is Apache Spark? 速度方面:Spark扩展了MapReduce模型,可以更高效地提供多种类型的计算,包括交互式查询和流处理.Spark为speed所提供的最大能力就是内存计算. 通用性方面:Spark被设计以支持多种工作负载,包括批应用,迭代算法,交互式查询和流. A Unified Stack Spark项目包含很多紧密集成的组件 Spark Core 包含Spark的基础功能,包括任务调度.内存管理.容错.与存储系统交互等组件 定义了Spark的主要编程抽象--RD…
注意:将mysql的驱动包拷贝到spark/lib下,将hive-site.xml拷贝到项目resources下,远程调试不要使用主机名 import org.apache.spark._ import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.sql.hive.HiveContext import java.io.FileNotFoundException im…
1.1 Spark是什么? Spark是一个用来实现快速而通用的集群计算的平台. 1.2 一个大一统的软件栈 Spark项目包含多个紧密集成的组件. 1.2.1 Spark Core Spark Core实现了Spark的基本功能, 包含任务调度.内存管理.错误恢复.与存储系统交互等模块.Spark Core中还包含了对RDD的API定义.RDD表示分布在多个计算节点上可以并行操作的元素集合,是Spark主要的变成抽象. 1.2.2 Spark SQL Spark SQL是Spark用来操作结构…
一.        场景 ◆ Spark[4]: Scope:  a MapReduce-like cluster computing framework designed for low-latency iterativejobs and interactive use from an interpreter(在大规模的特定数据集上的迭代运算或重复查询检索) 正如其目标scope,Spark适用于需要多次操作特定数据集的应用场合.需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小…
一.引言 Spark内存计算框架 中国Spark技术峰会 十二场演讲 大数据改变世界,Spark改变大数据 大数据: 以Hadoop 2.x为主的生态系统框架(MapReduce并行计算框架) 存储数据.处理数据 分布式 Spark: 类似于MapReduce的另外一种分布式计算框架 核心: 数据结构:RDD,集合List[T] MapReduce 最大的痛点: IO性能瓶颈,也是所有分布式计算框架的痛点 (1)磁盘IO, input(disk) -> map -> DISK(local)-&…
一.官网介绍 1.什么是Spark 官网地址:http://spark.apache.org/ Apache Spark™是用于大规模数据处理的统一分析引擎. 从右侧最后一条新闻看,Spark也用于AI人工智能 spark是一个实现快速通用的集群计算平台.它是由加州大学伯克利分校AMP实验室 开发的通用内存并行计算框架,用来构建大型的.低延迟的数据分析应用程序.它扩展了广泛使用的MapReduce计算 模型.高效的支撑更多计算模式,包括交互式查询和流处理.spark的一个主要特点是能够在内存中进…
Spark与Hadoop的对比   Scala是Spark的主要编程语言,但Spark还支持Java.Python.R作为编程语言 Hadoop的编程语言是Java    …
Spark Core 1. 概述 Spark 是一种基于内存的快速.通用.可扩展的大数据分析计算引擎 1.1 Hadoop vs Spark 上面流程对应Hadoop的处理流程,下面对应着Spark的处理流程 Hadoop Hadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式 分析应用的开源框架 作为 Hadoop 分布式文件系统,HDFS 处于 Hadoop 生态圈的最下层,存储着所有的 数 据 , 支持着 Hadoop的所有服务 . 它的理论基础源于Goog…
Spark快速入门 - Spark 1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 快速入门(Quick Start) 本文简单介绍了Spark的使用方式.首先介绍Spark的交互界面的API使用,然后介绍如何使用Java.Scala以及Python编写Spark应用.详细的介绍请阅读Spark Programming Guide. 在按照本文进行操作之前,请确保已安装Spark.本文中的所有操作没有使用HDFS,所以您可以安装任何版本的Hadoop.…
注重版权,尊重他人劳动 转帖注明原文地址:http://www.cnblogs.com/vincent-hv/p/3316502.html   Spark主要提供三种位置配置系统: 环境变量:用来启动Spark workers,可以设置在你的驱动程序或者conf/spark-env.sh 脚本中: java系统性能:可以控制内部的配置参数,两种设置方法: 编程的方式(程序中在创建SparkContext之前,使用System.setProperty(“xx”,“xxx”)语句设置相应系统属性值)…
1.安装完spark,进入spark中bin目录: bin/spark-shell   scala> val textFile = sc.textFile("/Users/admin/spark/spark-1.6.1-bin-hadoop2.6/README.md") scala> textFile.flatMap(_.split(" ")).filter(!_.isEmpty).map((_,1)).reduceByKey(_+_).collect(…
一.简介 许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用,还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它允许用户使用一套和批处理非常接近的 API 来编写流式计算应用,这样就可以大量重用批处理应用的技术甚至代码. 和 Spark 基于 RDD 的概念很相似,Spark Streaming 使用离散化流(discretized stream)作为抽象表示,叫作 DStream.DStream 是随时间推…
下面来看看更复杂的情况,比如,当调度器进行流水线执行(pipelining),或把多个 RDD 合并到一个步骤中时.当RDD 不需要混洗数据就可以从父节点计算出来时,调度器就会自动进行流水线执行.上一篇博文结尾处输出的谱系图使用不同缩进等级来展示 RDD 是否会在物理步骤中进行流水线执行.在物理执行时,执行计划输出的缩进等级与其父节点相同的 RDD 会与其父节点在同一个步骤中进行流水线执行.例如,当计算 counts 时,尽管有很多级父 RDD,但从缩进来看总共只有两级.这表明物理执行只需要两个…
一.使用SparkConf配置Spark 对 Spark 进行性能调优,通常就是修改 Spark 应用的运行时配置选项.Spark 中最主要的配置机制是通过 SparkConf 类对 Spark 进行配置.当创建出一个 SparkContext 时,就需要创建出一个 SparkConf 的实例. import org.apache.spark.SparkContext import org.apache.spark.SparkConf object Test { def main(args: A…
一.前述 Spark中调优大致分为以下几种 ,代码调优,数据本地化,内存调优,SparkShuffle调优,调节Executor的堆外内存. 二.具体    1.代码调优 1.避免创建重复的RDD,尽量使用同一个RDD 2.对多次使用的RDD进行持久化 如何选择一种最合适的持久化策略? 默认情况下,性能最高的当然是MEMORY_ONLY,但前提是你的内存必须足够足够大,可以绰绰有余地存放下整个RDD的所有数据.因为不进行序列化与反序列化操作,就避免了这部分的性能开销:对这个RDD的后续算子操作,…
一.前述 Spark内存管理 Spark执行应用程序时,Spark集群会启动Driver和Executor两种JVM进程,Driver负责创建SparkContext上下文,提交任务,task的分发等.Executor负责task的计算任务,并将结果返回给Driver.同时需要为需要持久化的RDD提供储存.Driver端的内存管理比较简单,这里所说的Spark内存管理针对Executor端的内存管理. Spark内存管理分为静态内存管理和统一内存管理,Spark1.6之前使用的是静态内存管理,S…
一.前述 Spark中资源调度是一个非常核心的模块,尤其对于我们提交参数来说,需要具体到某些配置,所以提交配置的参数于源码一一对应,掌握此节对于Spark在任务执行过程中的资源分配会更上一层楼.由于源码部分太多本节只抽取关键部分和结论阐述,更多的偏于应用. 二.具体细节 1.Spark-Submit提交参数 Options: --master MASTER_URL, 可以是spark://host:port, mesos://host:port, yarn,  yarn-cluster,yarn…
Spark2.1.1 一 Spark Submit本地解析 1.1 现象 提交命令: spark-submit --master local[10] --driver-memory 30g --class app.package.AppClass app-1.0.jar 进程: hadoop 225653 0.0 0.0 11256 364 ? S Aug24 0:00 bash /$spark-dir/bin/spark-class org.apache.spark.deploy.SparkS…
Spark安装 spark运行环境 spark是Scala写的,运行在jvm上,运行环境为java7+ 如果使用Python的API ,需要使用Python2.6+或者Python3.4+ Spark1.6.2  -  Scala 2.10    Spark 2.0.0  -  Scala  2.11 Spark下载 下载地址:http://spark.apache.org/downloads.html 搭建spark,不需要Hadoop,如有Hadoop集群,可下载对应版本解压 Spark目录…
背景: 需要在spark2.2.0更新broadcast中的内容,网上也搜索了不少文章,都在讲解spark streaming中如何更新,但没有spark structured streaming更新broadcast的用法,于是就这几天进行了反复测试.经过了一下两个测试::Spark Streaming更新broadcast.Spark Structured Streaming更新broadcast. 1)Spark Streaming更新broadcast(可行) def sparkStre…