HYSBZ - 3813奇数国 中文题,巨苟题,巨无敌苟!!首先是关于不相冲数,也就是互质数的处理,欧拉函数是可以求出互质数,但是这里的product非常大,最小都2100000,这是不可能实现的.所以我们要求互质数的话,得用到所有金额都用60个素数表示的这个条件.也就是x=p1a1xp2a2x...p60a60表示,pi是第i个素数,ai是对应的指数,这就变成了互质素求欧拉函数,可以先了解一下欧拉函数,引用一下境外大佬的博客欧拉函数的讲解.我们需要用到这一条 p为质数 1. phi(p)=p-…
Description 有一个长为 \(n\) 的序列,保证序列元素不超过 \(10^6\) 且其质因数集是前60个质数集合的子集.初始时全部都是 \(3\),有 \(m\) 次操作,要么要求支持单点修改,要么要求查询区间 \([l,~r]\) 的区间积 \(x\) 的欧拉函数值 \(\phi(x)\) 对一个质数取模的结果. Limitation \(1 \leq n,~m \leq 10^5\) Solution 考虑一个公式 \[\phi(x) = \prod_{i = 1}^{60} p…
uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操作加入线段树中下一个叶子,然后如果某个节点里所有操作都加进去了,就条到父亲,把两个儿子的信息合并到父亲上.这里合并就是把两个区间集合合并成一个,例如两个区间\([a,c]\)和\([b,d](a\le b\le c\le d)\)会合并成\([a,b),[b,c),[c,d]\).合并出来的区间如果…
传送门 令\(\sqrt r = x\) 考虑将\(-1^{\lfloor d \sqrt r \rfloor}\)魔改一下 它等于\(1-2 \times (\lfloor dx \rfloor \mod 2)\),也就等于\(1 - 2 \times \lfloor dx \rfloor + 4 \times \lfloor \frac{dx}{2} \rfloor\) 那么我们现在就要求\(\sum\limits_{i=1}^n \lfloor ix \rfloor\)的值,求\(\sum…
题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完备匹配,则称这是一个稳定匹配. 稳定匹配一定存在,且存在一个\(O(n^2)\)的算法: 任选一个未匹配的男生x,按x的喜爱程度从大到小枚举每个女生,若当前女生没有配偶或喜欢x胜过喜欢当前配偶,则与x匹配.直到所有男生都匹配. 这一题我们用行表示男生,n个数表示女生.喜爱程度为:行更喜欢靠前的数,数…
稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男生向自己未追求过的排名最高女生求婚. 然后每个有追求者的女生在自己现男友和追求者中选择一个最喜欢的接受,然后拒绝其他人. 算法一定可以结束. 因为如果最后有一个男生单身,那他一定把所有女生都追求过一遍,说明没有女生单身,产生矛盾. #include<iostream> #include<cs…
 number⋅x+product⋅y=1  有整数x,y解的条件是gcd(number, product) == 1. product用线段树维护一下,然后现学了个欧拉函数. 可以这样假如x = p1^a1 * p2^a2 * p3^a3 * ... * pn^an,那么phi(x) = (p1 - 1) * p1^(a1 - 1) + (p2 - 1) * p2^(a2 - 1) + (p3 - 1) * p3^(a3 - 1) + ... + (pn - 1) * pn^(an - 1).…
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘以一个数的逆元: 代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define maxn 100005…
考虑欧拉函数的性质,60很小,压位存下线段树每个节点出现质数. #include<bits/stdc++.h> ; ; typedef long long ll; using namespace std; ],n,m,vis[]; ll val,p,rev[]; struct Segment_Tree{ #define lson (o<<1) #define rson (o<<1|1) ll sumv[N<<],pri[N<<]; inline…
题目 题目看起来好像很难的样子!其实不然,这是最简单的一道题. 算法 首先要注意的是: \(number \cdot x + product \cdot y = 1\) ,那么我们称\(number\)与\(product\)不相冲. 等价于 当\(number\)和\(product\)互质时,那么我们称\(number\)与\(product\)不相冲. 所以求与\(product\)不冲突的\(number\)个数,即是求\(\varphi (product)\)(即\(product\)…