storm的并发】的更多相关文章

storm的并发机制 storm计算支持在多台机器上水平扩容,通过将计算切分为多个独立的tasks在集群上并发执行来实现. 一个task可以简单地理解:在集群某节点上运行的一个spout或者bolt实例. topology的组成部分:Nodes(服务器):配置在一个storm集群中的服务器,会执行topology的一部分运算.一个storm集群可以包括一个或者多个工作node; Workers(JVM虚拟机):一个NOde上相互独立运行的JVM进程.每个Node可以配置运行一个或者多个worke…
什么是storm的并发度 一个topology(拓扑)在storm集群上最总是以executor和task的形式运行在suppervisor管理的worker节点上.而worker进程都是运行在jvm虚拟机上面的,每个拓扑都会被拆开多个组件分布式的运行在worker节点上. 1.worker 2.executor 3.task 这三个简单关系图: 一个worker工作进程运行一个拓扑的子集(其实就是拓扑的组件),每个组件的都会以executor(线程)在worker进程上执行,一个worker进…
Storm并发配置的优先级: defaults.yaml < storm.yaml < topology-specific configuration < internal  component-specific configuration < external component-specific configuration 通过下图来理解并行度的一些配置: 消息的可靠处理机制 如何保证消息不被丢失?即什么条件下,storm会认为从一个spout发送出来的消息被完整处理了呢? 1…
Storm中涉及到了很多组件,例如nimbus,supervisor等等,在参考了这两篇文章之后,对这个有了更好的理解. Understanding the parallelism of a Storm topology https://github.com/nathanmarz/storm/wiki/Understanding-the-parallelism-of-a-Storm-topology http://www.cnblogs.com/yufengof/p/storm-worker-e…
1 storm并行的基本概念 storm集群中的一个机器可以运行一个或者多个worker,对应于一个或者多个topologies. 1个worker进程运行1个或多个excutor线程.每个worker从属于一个topology. executor是单线程.每1个executor运行着相同的组件(spout或bolt)的1个或多个task. 1个task执行着实际的数据处理. 一个实际的例子: What Description Configuration option How to set in…
1.是什么构成一个可运行的topology? worker processes(worker进程),executors(线程)和tasks. 一台Storm集群里面的机器可能运行一个或多个worker进程,一个worker进程运行一个特定topology的executors. 一个worker进程可能运行一个或多个executors.每个executor是一个线程.一个executor运行同一个spout或者bolt的一个或多个task. 一个task完成具体的数据处理. 一个worker进程执…
一.storm的并发 (1)Workers(JVMs):在一个物理节点上可以运行一个或多个独立的JVM进程.一个Topology可以包含一个或多个worker(并行的跑在不同的物理机上),所以worker process就是执行一个topology的子集, 并且worker只能对应于一个topology (2)Executors(threads):在一个workerJVM进程中运行着多个Java线程.一个executor线程可以执行一个或多个tasks.但一般默认每个executor只执行一个t…
作者:Jack47 转载请保留作者和原文出处 欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 一个Storm拓扑,就是一个复杂的多阶段的流式计算.Storm中的组件(Component)就是对各个阶段的一个抽象,其中的Spout是生产者的角色,它负责源源不断地从Storm外部接收消息,扔给下游的组件处理,下游组件处理完成后,最终输出到外部的存储系统. 本文主要讲解消息在Storm内部的各个组件(Component)之间如何进行传递,本文适用于JStorm 2.…
Storm 实战:构建大数据实时计算(阿里巴巴集团技术丛书,大数据丛书.大型互联网公司大数据实时处理干货分享!来自淘宝一线技术团队的丰富实践,快速掌握Storm技术精髓!) 阿里巴巴集团数据平台事业部商家数据业务部 编著 ISBN 978-7-121-22649-6 2014年8月出版 定价:59.00元 184页 16开 编辑推荐 Storm以其简单.灵活.健壮而著称.随着大数据实时处理需求的强劲增长,Storm的出现填补了大数据处理生态系统的缺失,并被越来越多的公司所采用. <Storm实战…
推荐慕课网视频:http://www.imooc.com/video/10055 ====Storm的起源. Storm是开源的.分布式.流式计算系统 什么是分布式呢?就是将一个任务拆解给多个计算机去执行,让许多机器共通完成同一个任务, 把这个多机的细节给屏蔽,对外提供同一个接口.同一个服务,这样的系统就是分布式系统. 在多年以前并没有非常范用的分布式系统,即使存在,也都是限定在指定的领域, 当然,也有人尝试从中提取出共通的部分,发明一个通用的分布式系统,但是都没有很好的结果. 后来,Googl…
本博文的主要内容有 .storm单机模式,打包,放到storm集群 .Storm的并发机制图 .Storm的相关概念 .附PPT 打包,放到storm集群去.我这里,是单机模式下的storm. weekend110-storm  ->   Export   ->   JAR file   -> 当然,这边,肯定是,准备工作已经做好了.如启动了zookeeper,storm集群. 上传导出的jar sftp> cd /home/hadoop/ sftp> put c:/d de…
[转载自https://yq.aliyun.com/articles/87510?t=t1] Storm 系统中包含以下几个基本概念: 拓扑(Topologies) 流(Streams) 数据源(Spouts) 数据流处理组件(Bolts) 数据流分组(Stream groupings) 可靠性(Reliability) 任务(Tasks) 工作进程(Workers) 译者注:由于 Storm 的几个基础概念无论是直译还是意译均不够清晰,而且还会让习惯了 Storm 编程模型的读者感到困惑,因此…
一.Storm的数据分发策略 1. Shuffle Grouping 随机分组,随机派发stream里面的tuple,保证每个bolt task接收到的tuple数目大致相同. 轮询,平均分配 2. Fields Grouping 按字段分组,比如,按"user-id"这个字段来分组,那么具有同样"user-id"的 tuple 会被分到相同的Bolt里的一个task, 而不同的"user-id"则可能会被分配到不同的task. 3. All G…
一.使用组件的并行度代替线程池 Storm 自身是一个分布式.多线程的框架,对每个Spout 和Bolt,我们都可以设置其并发度:它也支持通过rebalance 命令来动态调整并发度,把负载分摊到多个Worker 上.       如果自己在组件内部采用线程池做一些计算密集型的任务,比如JSON 解析,有可能使得某些组件的资源消耗特别高,其他组件又很低,导致Worker 之间资源消耗不均衡,这种情况在组件并行度比较低的时候更明显. 比如某个Bolt 设置了1 个并行度,但在Bolt 中又启动了线…
什么是Apache Storm Apache Storm是一个分布式实时大数据处理系统.Storm设计用于在容错和水平可扩展方法中处理大量数据.它是一个流数据框架,具有最高的摄取率.虽然Storm是无状态的,它通过Apache ZooKeeper管理分布式环境和集群状态.通过Storm可以并行地对实时数据执行各种操作.Storm易于部署和操作,并且它可以保证每个消息将通过拓扑至少处理一次. Apache Storm核心概念 Apache Storm从一端读取​​实时数据的原始流,并将其传递通过一…
一.什么是Storm Strom是由Twitter开源的类似于Hadoop的实时数据处理框架.Strom是分布式流式数据处理系统,强大的分布式集群管理.便捷的针对流式数据的编程模型.高容错保障这些都是其成为流式实时数据处理的首选. 二.Storm特点与优势 1)易用:为复杂的流计算模型提供了丰富的服务和编程接口,开发迅速.容易上手学习使用.(开发迅速,容易上手) 2)容错:具有适应性的容错能力.当工作进程(worker)失败时,Storm可以自动重启这些进程:当一个节点宕机时,上面的所有工作进程…
一面 24日 晚上5:30-6:40 1 先说自己熟悉的领域 2 list的实现有什么?   arraylist1.6 1.7区别  底层   linkedlist 底层是怎么实现的 单向还是双向  lru缓存   如果按位置索引,那个快? 3 hash的实现 是否是线程安全的 写一个不安全的实现 哪里不安全   hashmap的不安全在于扩容的时候   参见:http://blog.csdn.net/dlf123321/article/details/52014162 4 concurrent…
storm    实时分析概念        离线分析             通常是 需要一段时间的数据积累 积累到一定数量数据后 开始离线分析 无论数据量多大 离线分析 有开始 也有结束 最终得到一个处理的结果 这样的分析过程 得到的结果是有较大的延迟的        实时分析            通常 数据不停的到来 随着数据的到来 来进行增量的运算 立即得到新数据的处理结果 并没有一个数据积累的过程 有开始 但是没有明确的结束的时刻 数据实时的进行运算 基本没有延迟    Storm概…
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 注:本文主要内容翻译自understanding-the-parallelism-of-a-storm-topology 本篇文章介绍了Storm拓扑的并发模型.介绍了Worker进程,Executor(线程)和Task(任务)之间的关系,如何按照需要配置他们.本文基于Storm 0.8.1版本,最新发布版本已经到了0.9.5了. 对于不了解Storm的朋友,可以先去…
Tasks & executors relation Q1. However I'm a bit confused by the concept of "task". Is a task an running instance of the component(spout or bolt) ? An executor having multiple tasks actually is saying the same component is executed for multi…
前言: 学了几天storm的基础,发现如果有hadoop基础,再理解起概念来,容易的多.不过,涉及到一些独有的东西,如调度,如并发度,还是很麻烦.那么,从这一篇开始,力争清晰的梳理这些知识. 在正式学习并发之前,有必要先明确几个基本概念的定义,以及具体作用. 一.基础概念 1.1 Topology 原意拓扑.可以把他理解为是hadoop中的job,他是把一系列的任务项组装后的一个结果. 1.2 Spout 是任务的一种,作用是读取数据,然后组装成一定的格式,发射出去. 1.3 Bolt 是另一种…
本文导读: 1 Worker.Executor.task详解 2 配置拓扑的并发度 3 拓扑示例 4 动态配置拓扑并发度 Worker.Executor.Task详解: Storm在集群上运行一个Topology时,主要通过以下3个实体来完成Topology的执行工作:1. Worker Process(工作进程)——Spout/Bolt中运行具体处理逻辑的进程2. Executor(线程.执行器)——物理线程3. Task(任务)——具体的处理逻辑对象 下图简要描述了这3者之间的关系: sto…
Storm并发度和Grouping方式 .note-content {font-family: "Helvetica Neue",Arial,"Hiragino Sans GB","STHeiti","Microsoft YaHei","WenQuanYi Micro Hei",SimSun,Song,sans-serif;} .note-content h2 {line-height: 1.6; colo…
1.Storm全面.系统.深入讲解,采用最新的稳定版本Storm 0.9.0.1 :   2.注重实践,对较抽象难懂的技术点如Grouping策略.并发度及线程安全.批处理事务.DRPC.Storm Trident均结合企业场景开发案例进行讲解,  让学员觉得简单易懂:   3.分享积累的经验和技巧,从架构的角度剖析场景和设计实现方案:   4.讲师Cloudy具有丰富的电商云平台架构经验,对流计算更是涉足早.沉淀深,课程依然沿用重实践.重实战的风格.     学习课程需要具有: Java基础.…
本文可作为 <<Storm-分布式实时计算模式>>一书1.4节的读书笔记 在Storm中,一个task就可以理解为在集群中某个节点上运行的一个spout或者bolt实例. 记住一个task是一个实例. 实例明白吧 Class Person 是一个类, persona,personb都是Person的一个实例. 在集群运行运行中,topology主要有四个组成部分. 他们从低到高分别是task(bolt/spout实例),Executor(线程),Workers(JVM虚拟机),No…
概念 Workers (JVMs): 在一个物理节点上可以运行一个或多个独立的JVM 进程.一个Topology可以包含一个或多个worker(并行的跑在不同的物理机上), 所以worker process就是执行一个topology的子集, 并且worker只能对应于一个topology  Executors (threads): 在一个worker JVM进程中运行着多个Java线程.一个executor线程可以执行一个或多个tasks.但一般默认每个executor只执行一个task.一个…
来自:https://storm.apache.org/documentation/Understanding-the-parallelism-of-a-Storm-topology.html http://blog.csdn.net/derekjiang/article/details/9040243 概念理解 原文中用了一张图来说明在一个storm cluster中,topology运行时的并发机制. 其实说白了,当一个topology在storm cluster中运行时,它的并发主要跟3个…
1. 核心原理 一个运行中的拓扑是由什么组成的:worker进程,executors和tasks.Storm是按照下面3种主要的部分来区分Storm集群中一个实际运行的拓扑的:Worker进程.Executors (线程) 以及真正实施计算的Tasks(任务),先简单回顾一下storm几个核心概念: tuple :元组,数据结构,有序的元素列表.通常是任意类型的数据,使用","号分割,交给storm计算. Stream :一系列tuple. Spouts :水龙头.数据源. Bolts…
Spouts,流的源头 Spout是Storm里面特有的名词,Stream的源头,通常是从外部数据源读取tuples,并emit到topology Spout可以同时emit多个tupic stream,通过OutputFieldsDeclarer中的declareStream,method来定义 Spout需要实现RichSpout端口,最重要的方法是nextTuple,storm会不断调用接口从spout中取数据,同时需要注意的是Spout分为reliable or unreliable两种…
一.前述 为了提高Storm的并行能力,通常需要设置并行. 二.具体原理 1. Storm并行分为几个方面: Worker – 进程一个Topology拓扑会包含一个或多个Worker(每个Worker进程只能从属于一个特定的Topology)这些Worker进程会并行跑在集群中不同的服务器上,即一个Topology拓扑其实是由并行运行在Storm集群中多台服务器上的进程所组成 Executor – 线程Executor是由Worker进程中生成的一个线程每个Worker进程中会运行拓扑当中的一…