tf训练OTSU】的更多相关文章

训练一个简单的回归网络 基础的函数如下: # coding=utf-8 import tensorflow as tf import numpy as np np.random.seed(0) # 卷积权重初始化 def weight(shape): return tf.Variable(tf.truncated_normal(shape, stddev=0.1), name ='W') # 偏差值初始化 def bias(shape): return tf.Variable(tf.consta…
本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃 最近事情比较多,前面坑挖的有点久,今天终于有时间总结一下,顺便把Windows下训练跑通.Linux训练建议仔细阅读https://zhuanlan.zhihu.com/p/27469690,我借鉴颇多,此外还可以参考GitHub上的官方文档https://github.com/tensorflow/models/tree/master/research/object_detection.…
早在四月份的时候,就已经开了这篇文章.当时是参加数据挖掘的比赛,在计科院大佬的建议下用TensorFlow搞深度学习,而且要在自己的hadoop分布式集群系统下搞. 当时可把我们牛逼坏了,在没有基础的前提下,用一个月的时间搭建自己的大数据平台并运用人工智能框架来解题. 结果可想而知:GG~~~~(只是把hadoop搭建起来了....最后还是老老实实的写爬虫) 当时搭建是用VM虚拟机,等于是在17台机器上运行17个CentOS 7,现在我们用docker来打包环境. 一.技术架构 Docker 1…
第三章:TensorFlow入门 TensorFlow存在计算模型,数据模型和运算模型(本文用TF代表TensorFlow) 3.1 计算模型-计算图 3.1.1 计算图的概念 TensorFlow这个词Tensor表示张量,可以简单的理解为多维数组,Flow直观的表达了张量之间通过计算相互转化的过程. 如上图,TensorFlow中每个节点都是一个计算,而边代表了计算之间的依赖关系.a,b这两个常量不依赖任何其他计算,而add则依赖于两个常量的取值.所有TensorFlow的程序都可以用类似的…
此基础知识仅为个人学习记录,如有错误或遗漏之处,还请各位同行给个提示. 概述 TFLite主要含有如下内容: (1)TFLite提供一系列针对移动平台的核心算子,包括量化和浮点运算.另外,TFLite也支持在模型中使用自定义算子. (2)TFLite基于FlatBuffers定义了一种新的模型文件格式.FlatBuffers类似于protocol buffers, FlatBuffers在访问数据之前不需要进行解析/解包步骤,通常与每个对象的内存分配相结合.而且,FlatBuffers的代码占用…
MachineLN博客目录 https://blog.csdn.net/u014365862/article/details/78422372 本文为博主原创文章,未经博主允许不得转载.有问题可以加微信:lp9628(注明CSDN). 公众号MachineLN,邀请您扫码关注: MachineLP的Github(欢迎follow):https://github.com/MachineLP train_cnn_v0: 实现基础cnn训练,数据读取方式慢. train_cnn_v1: 优化数据读取的…
5.1 MNIST数据处理 MNIST是NIST数据集的一个子集,包含60000张图片作为训练数据,10000张作为测试数据,其中每张图片代表0~9中的一个数字,图片大小为28*28(可以用一个28*28矩阵表示) 为了清楚表示,用下图14*14矩阵表示了,其实应该是28*28矩阵 TF提供了一个类来处理MNIST数据: 准备工作:桌面新建MNIST数字识别->cd MNIST数字识别->shift + 右键->在此处新建命令窗口->jupyter notebook->新建g…
TensorFlow 更新频率实在太快,从 1.0 版本正式发布后,很多 API 接口就发生了改变.今天用 TF 训练了一个 CNN 模型,结果在保存模型的时候居然遇到各种问题.Google 搜出来的答案也是莫衷一是,有些回答对 1.0 版本的已经不适用了.后来实在没办法,就翻了墙去官网看了下,结果分分钟就搞定了-囧-. 这篇文章内容不多,主要讲讲 TF v1.0 版本中保存和读取模型的最简单用法,其实就是对官网教程的简要翻译摘抄. 保存和恢复 在 TensorFlow 中,保存和恢复模型最简单…
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使用 3.会话 4.TensorFlow实现神经网络 I. 前向传播算法 II. 神经网络参数与TensorFlow变量 III. 用TF训练神经网络 四.深层神经网络 1. 深度学习与深度神经网络 I. 线性模型的局限性 II. Activation去线性化 III. 多层网络解决异或运算 2. L…
17年的旧文,最近因为SageDB论文而重读. 文章主要思路是通过学习key的顺序.结构等来预测record在位置.存在与否等.效果方面,据称部分场景下,相对b-tree可以优化70%的内存占用. 最大价值其实在于使用ML来优化(索引)系统这个新的方向. Range Index 审视下btree查找完成的功能:输入一个key,每次选出一个可能的范围(分支节点),直到最后命中(叶子节点).这其实跟ML中模型类似. 换句话说,若能估算出数据的累积分布(记作F),那么查询key所在位置,也可以看成是…