DStream算子讲解(一)】的更多相关文章

先把目录列好,方便有条理的进行整理…
1:Zip算子 def zip[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[(T, U)] 将两个RDD做zip操作,如果当两个RDD分区数目不一样的话或每一个分区数目不一样的话则会异常. 例如: val rdd1 = sc.parallelize(Array(1,2,3,4,5,6),2) val rdd2 = sc.parallelize(Array(1,2,3,4,5,6),3) rdd.zip(rdd1).collect 异常信息…
1:groupByKey def groupByKey(): RDD[(K, Iterable[V])] 根据key进行聚集,value组成一个列表,没有进行聚集,所以在有shuffle操作时候避免使用概算子,会增大通信数据量.需要考虑进行一个本地的Combiner,所以可以直接使用reduceByKey cala> p.collect res15: Array[(Int, Int)] = Array((1,1), (2,1), (1,1), (2,1), (1,1), (2,1), (3,1)…
1:glom def glom(): RDD[Array[T]] 将原RDD的元素收集到一个数组,创建一个数组类型的RDD 2:getNumPartitions final def getNumPartitions: Int 求RDD的分区书 3:groupBy def groupBy[K](f: (T) ⇒ K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] 根据指定函数进行分组,例如: scala> rdd1.collect res61:…
更多有用的例子和算子讲解参见: http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html map是对每个元素操作, mapPartitions是对其中的每个partition操作 ------------------------------------------------------------------------------------------- ----------------------------…
目录 Spark(二)算子讲解 一.wordcountcount 二.编程模型 三.RDD数据集和算子的使用 Spark(二)算子讲解 @ 一.wordcountcount 基于上次的wordcount,我们来写一个wordcountcount,来对wc程序进行第二次计数,我们来分析一下性能. package com.littlepage.wc import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkCon…
目录 第三章 HALCON图像处理基础 HALCON控制语句 HALCON算子 HALCON图像处理入门 HALCON图像读取 HALCON图像显示 图形窗口 图像显示 显示文字 HALCON图像转换 我在Gitee上建了个仓库,会将学习书本的时候打的一些代码上传上去,笔记中所有代码都在仓库里,初学的朋友可以一起交流哦!地址(Gitee) 第三章 HALCON图像处理基础 HALCON控制语句 if条件语句 HALCON提供的控制流跟C/C++的差不多,也与RAPID语言有点像,有if就会有en…
一.前述 SparkStreaming中的算子分为两类,一类是Transformation类算子,一类是OutPutOperator类算子. Transformation类算子updateStateByKey,reduceByKeyAndWindow,transform OutPutOperator类算子print,foreachRDD,saveAsTextFile 本文讲解OutPutOperator类算子. 二.具体 1.foreachRDD 可以拿到DStream中的一个个的RDD,对拿到…
Spark Streaming中的操作函数讲解 根据根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations Join Operations Output Operations 一.Transformations 1.map(func) map操作需要传入一个函数当做参数,具体调用形式为 主要作用是,对DStream对象a,将func函数作用到a中的每一个元…
彻底理解数字图像处理中的卷积-以Sobel算子为例 作者:FreeBlues 修订记录 2016.08.04 初稿完成 概述 卷积在信号处理领域有极其广泛的应用, 也有严格的物理和数学定义. 本文只讨论卷积在数字图像处理中的应用. 在数字图像处理中, 有一种基本的处理方法:线性滤波. 待处理的平面数字图像可被看做一个大矩阵, 图像的每个像素对应着矩阵的每个元素, 假设我们平面的分辨率是 1024*768, 那么对应的大矩阵的行数= 1024, 列数=768. 用于滤波的是一个滤波器小矩阵(也叫卷…