NVIDIA GPU上的Tensor线性代数】的更多相关文章

NVIDIA GPU上的Tensor线性代数 cuTENSOR库是同类中第一个GPU加速的张量线性代数库,提供张量收缩,归约和逐元素运算.cuTENSOR用于加速在深度学习训练和推理,计算机视觉,量子化学和计算物理领域的应用.使用cuTENSOR,应用程序会自动受益于常规性能的改进和新的GPU架构. cutensor性能 cuTENSOR库针对NVIDIA GPU的性能进行了高度优化.最新版本增加了对DMMA和TF32的支持. cuTENSOR的主要功能 张量收缩,缩小和元素运算 混合精度支持…
NVIDIA GPU上的直接线性求解器 NVIDIA cuSOLVER库提供了密集且稀疏的直接线性求解器和本征求解器的集合,它们为计算机视觉,CFD,计算化学和线性优化应用程序提供了显着的加速.cuSOLVER库包含在NVIDIA HPC SDK和CUDA Toolkit中. cuSOLVER性能 cuSOLVER 11自动利用DMMA Tensor Core.DGX A100比DGX-2快2倍以上,这要归功于A100以及第三代NVLINK和NVSWITCH,GPU数量只有一半. cuSOLVE…
GPU上的基本线性代数 cuBLAS库提供了基本线性代数子例程(BLAS)的GPU加速实现.cuBLAS通过针对NVIDIA GPU进行了高度优化的嵌入式行业标准BLAS API来加速AI和HPC应用程序.cuBLAS库包含用于批处理操作,跨多个GPU的执行以及混合和低精度执行的扩展.使用cuBLAS,应用程序会自动受益于常规性能的改进和新的GPU架构.cuBLAS库包含在NVIDIA HPC SDK和CUDA Toolkit中. cuBLAS多GPU扩展 cuBLASMg提供了最新的多GPU矩…
NVIDIA GPU上的随机数生成 NVIDIA CUDA随机数生成库(cuRAND)提供高性能的GPU加速的随机数生成(RNG).cuRAND库使用NVIDIA GPU中提供的数百个处理器内核,将质量随机数提高了8倍.cuRAND库包含在NVIDIA HPC SDK和CUDA Toolkit中. cuRAND性能 cuRAND还提供两个灵活的接口,使您可以从CPU上运行的主机代码或GPU上运行的CUDA函数/内核中批量生成随机数.多种RNG算法和分发选项意味着可以根据需要选择最佳解决方案. c…
在NVIDIA A100 GPU上利用硬件JPEG解码器和NVIDIA nvJPEG库 根据调查,普通人产生的1.2万亿张图像可以通过电话或数码相机捕获.这样的图像的存储,尤其是以高分辨率的原始格式,会占用大量内存. JPEG指的是联合图像专家组,该组织于2017年庆祝成立25周年.JPEG标准指定了编解码器,该编解码器定义了如何将图像压缩为字节的位流并解压缩回图像. JPEG编解码器的主要目的是最小化照片图像文件的文件大小.JPEG是一种有损压缩格式,这意味着它不存储原始图像的完整像素数据.J…
GPU上稀疏矩阵的基本线性代数 cuSPARSE库为稀疏矩阵提供了GPU加速的基本线性代数子例程,这些子例程的执行速度明显快于仅CPU替代方法.提供了可用于构建GPU加速求解器的功能.cuSPARSE被从事机器学习,计算流体力学,地震勘探和计算科学等应用的工程师和科学家广泛使用.使用cuSPARSE,应用程序会自动受益于常规性能的改进和新的GPU架构.cuSPARSE库包含在NVIDIA HPC SDK和CUDA Toolkit中. cuSPARSE性能 cuSPARSE库针对NVIDIA GP…
NVIDIA GPU Volta架构简述 本文摘抄自英伟达Volta架构官方白皮书:https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/sc18-tesla-democratization-tech-overview-r4-web.pdf SM Volta架构目前仅GV100支持 Volta architecture comprises a single variant:…
NVIDIA GPU Turing架构简述 本文摘抄自Turing官方白皮书:https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf SM Turing的流式多处理器(SM)和Volta的架构相同,都是7.x. The Turing Streaming Mult…
TVM 优化 ARM GPU 上的移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源效率.但是,大多数现有的深度学习框架并不很好地支持移动 GPU.难点在于移动 GPU 架构和桌面 GPU 架构之间的区别.这意味着在移动 GPU 上进行优化需要特别努力.非平凡的额外工作最终导致移动 GPU 在大多数深度学习框架中支持不力. TVM 通过引入统一的 IR 堆栈,解决为不同硬件部署的困…
NVIDIA GPU自动调度神经网络 对特定设备和工作负载进行自动调整对于获得最佳性能至关重要.这是有关如何使用自动调度器为NVIDIA GPU调整整个神经网络. 为了自动调整神经网络,将网络划分为小的子图,并对其进行独立调整.每个子图被视为一个搜索任务.任务调度程序可以对时间进行分片,并为这些任务动态分配时间资源.任务调度程序可以预测每个任务对端到端执行时间的影响,确定可以最大程度地减少执行时间的任务的优先级. 对于每个子图,使用compute声明tvm/python/topi获取张量表达式形…