TensorFlow XLA加速编译器】的更多相关文章

TensorFlow XLA加速编译器 加速线性代数器(Accelerated linear algebra,XLA)是线性代数领域的专用编译器.根据 https://www.tensorflow.org/performance/xla/,它仍处于实验阶段,用于优化 TensorFlow 计算. XLA 可以提高服务器和移动平台的执行速度.内存使用率和可移植性.提供了双向 JIT(Just In Time)编译或 AoT(Ahead of Time)编译.使用 XLA,可以生成平台相关的二进制文…
用NVIDIA Tensor Cores和TensorFlow 2加速医学图像分割 Accelerating Medical Image Segmentation with NVIDIA Tensor Cores and TensorFlow 2 医学图像分割是当前学术界研究的热点.这方面正在进行的挑战.竞赛和研究项目的数量证明了这一点,这些项目的数量只是逐年上升.在解决这一问题的各种方法中,U-Net已经成为许多2D和3D分割任务的最佳解决方案的骨干.这是因为简单性.多功能性和有效性. 当实践…
加速线性代数器(Accelerated linear algebra,XLA)是线性代数领域的专用编译器.根据 https://www.tensorflow.org/performance/xla/,它仍处于实验阶段,用于优化 TensorFlow 计算. XLA 可以提高服务器和移动平台的执行速度.内存使用率和可移植性.它提供了双向 JIT(Just In Time)编译或 AoT(Ahead of Time)编译.使用 XLA,你可以生成平台相关的二进制文件(针对大量平台,如 x64.ARM…
本文转载自:https://blog.csdn.net/zhaoyu106/article/details/52793183 le/details/52793183 写在前面 一些废话 接触深度学习已经有一段时间,之前一直在windows下使用Theano,但是发现Theano天书般的源码真是头大,在看到tensorflow中文教程后,发现它竟然逻辑清晰,教程丰富,实在是居家旅行必备良药啊![偷笑][偷笑][偷笑] 所以决定利用国庆假期学习ubuntu和TensorFlow的安装,结果入坑无数,…
在tensorflow里可以通过tf.device函数来指定每个运行的设备,可以是GPU也可以是CPU,比如CPU在tensorflow里的名称为/cpu:0,即便电脑里有多个CPU,tensorflow也并不会去区分它们,但是每台设备上的GPU名称却是不一样的,第N个GPU的名称为/gpu:n,第一个GPU名字为/gpu:0,第二个为/gpu:1,以此类推. 此外,tensorflow提供了快捷的方式查看运行每一个运算的设备,也就是在生成会话的时候设置log_device_placement参…
TensorFlow API 汉化 模块:tf   定义于tensorflow/__init__.py. 将所有公共TensorFlow接口引入此模块. 模块 app module:通用入口点脚本. bitwise module:操作整数二进制表示的操作. compat module:Python 2与3兼容的函数. contrib module:包含易失性或实验代码的contrib模块. datamodule:tf.data.Dataset输入管道的API. debugging module:…
TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型训练过程.可用于开发环境.生产环境. 模型生命周期管理.模型先数据训练,逐步产生初步模型,优化模型.模型多重算法试验,生成模型管理.客户端(Client)向TensorFlow Severing请求模型,TensorFlow Severing返回适当模型给客户端.TensorFlow Serving…
[导读]TensorFlow 在 2015 年年底一出现就受到了极大的关注,经过一年多的发展,已经成为了在机器学习.深度学习项目中最受欢迎的框架之一.自发布以来,TensorFlow 不断在完善并增加新功能,直到在这次大会上发布了稳定版本的 TensorFlow V1.0.这次是谷歌第一次举办的TensorFlow开发者和爱好者大会,我们从主题演讲.有趣应用.技术生态.移动端和嵌入式应用多方面总结这次大会上的Submit,希望能对TensorFlow开发者有所帮助. TensorFlow:面向大…

XLA

原 TensorFlow技术内幕(七):模型优化之XLA(上) 2018年06月13日 14:53:49 jony0917 阅读数 5513   版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/gaofeipaopaotang/article/details/80679100 本章中我们分析一下TensorFlow的XLA(Accelerated Linear Algebra 加速线性代数…
端到端TVM编译器(下) 4.3 Tensorization DL工作负载具有很高的运算强度,通常可以分解为张量运算符,如矩阵乘法或一维卷积.这些自然分解导致了最近的添加张量计算原语.这些新的原语带来了机遇和挑战调度:为了 提高性能,编译框架必须无缝集成.称之为张量化:类似于SIMD体系结构的矢量化,但是 有显著差异.指令输入是多维的,具有固定或可变的长度,每个输入都有不同的数据布局.更重要的是,不能支持一组固定的原语,因为新的加速器是张量指令变体. 需要一个可扩展的解决方案.通过分离张量内在声…