NOIP 模拟 $13\; \text{工业题}$】的更多相关文章

题解 本题不用什么推式子,找规律(而且也找不出来) 可以将整个式子看成一个 \(n×m\) 矩阵 考虑 \(f_{i,j}\),它向右走一步给出 \(f_{i,j}×a\) 的贡献,向下走一步给出 \(f_{i,j}×b\) 的贡献,那么它到 \(f_{n,m}\) 给出 \(f_{i,j}×a^{m-j}+f_{i,j}×b^{n-i}\) 的贡献 但是,它到终点会有不同的走法,这个用组合数解即可,注意对于 \(f_{i,0}\) 它第一步只能向右走,因为向下的数是确定的.其它同理 预处理出阶…
题解 题如其名,是挺玄学的. 我们发现每个值是 \(-1\) 还是 \(1\) 只与它的次数是奇是偶有关,而 \(\sum_j^{j\le m}d(i×j)\) 又只与其中有多少个奇数有关 对于 \(x\) 其 \(d(x)\) 只有在 \(x\) 是完全平方数时才是奇数(易证),那么我们将每个 \(i\) 表示为 \(p×q^2\) 其中 \(p\) 的因子次数全为 \(1\) 那么能对其造成贡献的 \(j\) 只有当 \(p_j=p_i\),而这种数的个数为 \(\sqrt{\frac{m}…
题解 一道环套树的最小点覆盖题目,所谓环套树就是有在 \(n\) 个点 \(n\) 条边的无向联通图中存在一个环 我们可以发现其去掉一条环上的边后就是一棵树 那么对于此题,我们把所有 \(x\) 方点当点 \(y\) 方点当边,随便找一条环上的边删掉,然后分别从此边的两个端点做树形 \(dp\) 对于一条边上的两个点,我们一定要选一个,但不需要都选,类似例题 所以方程很好推,\(dp_{i,0}\) 表示不选 \(i\) 后覆盖 \(i\) 子树的最小费用,\(dp_{i,0}\) 表示选 \(…
T1:工业题 基本思路   这题有一个重要的小转化: 我们将原来的函数看作一个矩阵,\(f(i,j-1)*a\)相当于从\(j-1\)向右走一步并贡献a,\(f(i-1,j)*b\)相当于从\(i-1\)向下走一步并贡献b   那么问题就转化成了求从第\(0\)行与第\(0\)列的所有点走到点\((m,n)\)的所有方案数的总贡献   在一个点,对于他之前的点的所有走法,他都有可能向下或右走并带来贡献,所以是统计所有方案数.   易知从点\((i,j)\)到点\((m,n)\)的走的步数是\(m…
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照下来.他想让这一段中每个人的身高成等比数列,展示出最萌身高差,但他发现这个太难办到了,于是他决定放低要求,让等比数列的每两项之间可以是不连续的(例如 2,4,16--).可他依然找不到满意的,便再次妥协,使这个等比数列可以是乱序的. 现在请在其中你找出最长的符合要求的一段,使得将这一段排序后为某个公…
5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[尴尬\(.jpg\)] \(T1\)P3322 [SDOI2015]排序 背景 说实话,看见这题正解是dfs的那一刻,我人都傻了[流泪.jpg] 在讲这题的时候赵队@yspm 类比了线段树的思想%%%%%,在食用本篇题解时可以想一下 解题思路 最基本的一个思想:结果与操作的顺序无关,因为在更换的时候…
我好菜啊 真上次第二这次倒二... 因为昨天还没有改完所有的题所以就留到今天来写博客了 这次考试总结的教训有很多吧,反正处处体现XIN某人的laji,自己考试的是后本以为一共四个题目,三个题目都没有看懂,然而考试结束以后才发现,自己是四个题目都没有看懂.cao 又成10分XIN了 不管了,菜就是菜了. 以后看到题目中不懂的玩意儿也不应该害怕,什么曼哈顿距离,自己看看样例就知道了,不应该弃掉的,并且在手推样例认为样例有锅的时候也应该返回去去看看题目,而不是一味地认为题目有锅... \(\huge{…
T1 工业题 这波行列看反就非常尴尬.....口糊出所有正解想到的唯独行列看反全盘炸列(因为和T1斗智斗勇两个半小时...) 这题就是肯定是个O(n+m)的,那就往哪里想,a,b和前面的系数分开求,前面系数显然是小学学过的走步数方法问题,排列组合搞掉就行,a,b分别是向下走和向右走的步数.然后会打快速幂,会打费马小定理,会组合数学就可以过掉.这里关于系数有两种不同求法. 第一个是打表出的规律,第二个是按照(i,j)(n,m)的位置求得. 1 #include<bits/stdc++.h> 2…
1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选1,n的方案数 观察性质,模拟+元素的过程推知集合中元素是等差数列,且公差=1(mod 2) 故g[n] = n-1的奇约数 f长这样: 1 : 22 : 43 : 74 : 125 : 186 : 267 : 368 : 489 : 6110 : 7711 : 9512 : 11513 : 137…
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 既眼瘸又脑残,NOIP这样后悔去吧! T1 n*m网格,有S种颜色. 按从上到下,从左到右的顺序涂色. 相邻的相同色块可得一份,问最大得分 n,S<=100000,m<=4 只有最多4列 1列:顺着涂 2列:先涂可以涂偶数个 3列:先涂%3=0的,然后一个%3=1和一个%3=2的组合,剩余的顺着涂…