refer to:  https://www.kaggle.com/dansbecker/data-leakage There are two main types of leakage: Leaky Predictors and a Leaky Validation Strategies. Leaky Predictors This occurs when your predictors include data that will not be available at the time y…
Machine learning Machine learning is a scientific discipline that explores the construction and study of algorithms that can learn from data. Such algorithms operate by building a model based on inputs and using that to make predictions or decisions,…
转载请注明出处:https://www.codelast.com/ ➤ 用人话解释机器学习中的Logistic Regression(逻辑回归) ➤ 如何防止softmax函数上溢出(overflow)和下溢出(underflow) ➤ ELL(Embedded Learning Library,微软嵌入式学习库)文章合集 ➤ <Neural Networks and Deep Learning>读书笔记:最简单的识别MNIST的神经网络程序(1) ➤ <Neural Networks…
In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite for machine learning is data analysis, not math. One of the main reasons for making this statement, is that data scientists spend an inordinate amoun…
目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏.低秩.平滑等特性. 结合第二点以及贝叶斯估计的观点,正则化项(regularizer)就是先验概率项. 监督学习中绝大多数任务都可以概括为以下最小化目标: \[ w^* = \arg\min_w {\sum_i {L(y_i; f(x_i;w))} + \lambda \Omega(w)} \]…
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系? 本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比…
声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多或少会用到机器学习的算法.本文为您总结一下常见的机器学习算法,以供您在工作和学习中参考. 机器学习的算法很多.很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的.这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的分类. 博主在原创基础上加入了遗传…
最近在Udacity上学习Machine learning课程,对于验证集.测试集和训练集的相关概念有些模糊.故整理相关资料如下. 交叉检验(Cross Validation) 在数据分析中,有些算法需要利用现有的数据构建模型,比如贝叶斯分类器,决策树,线性回归等,这类算法统称为监督学习(Supervisied Learning)算法.构建模型需要的数据称之为训练数据(Train Data). 模型构建完后,需要利用数据验证模型的正确性,这部分数据被称为测试数据(Test Data).测试数据不…
Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多特征:4.尝试添加多项式特征:5.减小 λ:6.增大 λ 为了避免一个方案一个方案的尝试,可以通过评估机器学习算法的性能,来进行调试. 机器学习诊断法 Machine learning diagnostic 的定义: 10.2 评估一个假设 想要评估一个算法是否过拟合 (一)首先,划分测试集和训练集…
原文链接:https://riboseyim.github.io/2018/02/10/Machine-Learning-Algorithms/ 摘要 机器学习算法分类:监督学习.半监督学习.无监督学习.强化学习 基本的机器学习算法:线性回归.支持向量机(SVM).最近邻居(KNN).逻辑回归.决策树.k平均.随机森林.朴素贝叶斯.降维.梯度增强 目录 监督学习(Supervised learning) 机器学习算法分类 机器学习算法大致可以分为: 监督学习 | Supervised learn…