参考 1. Why look at case studies 介绍几个典型的CNN案例: LeNet-5 AlexNet VGG Residual Network(ResNet): 特点是可以构建很深的神经网络 Inception Neural Network 2. Classic Networks 典型的 LeNet-5 结构包含CONV layer,POOL layer 和 FC layer 顺序一般是 CONV layer->POOL layer->CONV layer->POOL…
参考1 参考2 1. 计算机视觉 使用传统神经网络处理机器视觉的一个主要问题是输入层维度很大.例如一张64x64x3的图片,神经网络输入层的维度为12288. 如果图片尺寸较大,例如一张1000x1000x3的图片,神经网络输入层的维度将达到3百万,使得网络权重W非常庞大. 这样会造成两个后果: 一是神经网络结构复杂,数据量相对不够,容易出现过拟合: 二是所需内存.计算量较大.解决这一问题的方法就是使用卷积神经网络(CNN). 2. 边缘检测示例 神经网络由浅层到深层,分别可以检测出图片的边缘特…
Deep Learning 用逻辑回归训练图片的典型步骤. 笔记摘自:https://xienaoban.github.io/posts/59595.html 1. 处理数据 1.1 向量化(Vectorization) 将每张图片的高和宽和RGB展为向量,最终X的shape为 (height*width*3, m) . 1.2 特征归一化(Normalization) 对于一般数据,使用标准化(Standardization) \(X_{scale} = \frac{(X(axis=0) -…
笔记:Andrew Ng's Deeping Learning视频 参考:https://xienaoban.github.io/posts/41302.html 参考:https://blog.csdn.net/u012328159/article/details/80210363 1. 训练集.验证集.测试集(Train, Dev, Test Sets) 当数据量小的时候, 70% 训练, 30% 测试:或 60% 训练.20% 验证.20%测试. 训练集( training set):用来…
参考:https://blog.csdn.net/red_stone1/article/details/78600255https://blog.csdn.net/red_stone1/article/details/78600255 1. error analysis 举个例子,猫类识别问题,已经建立的模型的错误率为10%.为了提高正确率,我们发现该模型会将一些狗类图片错误分类成猫.一种常规解决办法是扩大狗类样本,增强模型对够类(负样本)的训练.但是,这一过程可能会花费几个月的时间,耗费这么大…
笔记:Andrew Ng's Deeping Learning视频 摘抄:https://xienaoban.github.io/posts/58457.html 本章介绍了优化算法,让神经网络运行的更快 1. 梯度优化算法 1.1 Mini-batch 梯度下降 将 \(X = [x^{(1)}, x^{(2)}, x^{(3)}, ..., x^{(m)}]\) 矩阵所有 \(m\) 个样本划分为 \(t\) 个子训练集,每个子训练集,也叫做mini-batch: 每个子训练集称为 \(x^…
摘抄:https://xienaoban.github.io/posts/2106.html 1. 调试(Tuning) 超参数 取值 #学习速率:\(\alpha\) Momentum:\(\beta\) 0.9:相当于10个值中计算平均值:0.999相当于1000个值中计算平均值 Adam:\(\beta_1\) 0.9 Adam:\(\beta_2\) 0.999 Adam:\(\varepsilon\) \(10^{-8}\) #layers #hidden unit #mini-bat…
参考1 参考2 参考3 1. 为什么选择序列模型 序列模型能够应用在许多领域,例如: 语音识别 音乐发生器 情感分类 DNA序列分析 机器翻译 视频动作识别 命名实体识别 这些序列模型都可以称作使用标签数据(X,Y)作为训练集的监督式学习,输入x和输出y不一定都是序列模型.如果都是序列模型的话,模型长度不一定完全一致. 2. Notation(标记) 下面以 命名实体识别 为例,介绍序列模型的命名规则.示例语句为: Harry Potter and Hermione Granger invent…
参考 1. Word Representation 之前介绍用词汇表表示单词,使用one-hot 向量表示词,缺点:它使每个词孤立起来,使得算法对相关词的泛化能力不强. 从上图可以看出相似的单词分布距离较近,从而也证明了Word Embeddings能有效表征单词的关键特征. 2. 词嵌入(word embedding) Transfer learning and word embedding: 从海量词汇库中学习word embeddings(即所有单词的特征向量),或者从网上下载预训练好的w…
参考 1. 基础模型(Basic Model) Sequence to sequence模型(Seq2Seq) 从机器翻译到语音识别方面都有着广泛的应用. 举例: 该机器翻译问题,可以使用"编码网络(encoder network)"+"解码网络(decoder network)"两个RNN模型组合的形式来解决. encoder network将输入语句编码为一个特征向量,传递给decoder network,完成翻译.具体模型结构如下图所示: 其中,encoder…