正题 题目链接:https://www.luogu.com.cn/problem/P5319 题目大意 一个长度为\(n\)的串\(T\),用\(0\sim 9\)填充所有的\(.\). 然后给出\(m\)个串和它们的价值. 一个填充方案的价值等于:若\(T\)中出现了\(c\)个给出的串,那价值等于它们的价值乘积开\(c\)次根. \(1\leq m\leq 1501,1\leq V_i\leq 10^9\) 解题思路 \[ans=\sqrt[c]{\prod V_i} \] \[\ln an…
题解:很显然可以对权值取对数,然后把几何平均值转为算术平均值,然后很显然是分数规划.先对每个模式串建立AC自动机,每个节点w[i],sz[i]分别表示以其为前缀的字符串,然后再二分最优解k,然后w[i]-=k*sz[i],然后枚举T,在AC自动机上DP一遍,求最大值是否大于0即可. #include<bits/stdc++.h> using namespace std; ; ],fail[N],sz[N],g[N][N],h[N][N]; double w[N],f[N][N]; char T…
对最终答案取对数,得到$\ln(Ans)=\frac{1}{c}\sum \ln(v_i)$,典型的分数规划问题.二分答案后,对所有咒语串建立AC自动机,然后套路地$f[i][j]$表示走到T的第i个字符,当前在自动机的第j个位置,能得到的最大收益.注意二分的r初始不能设太大,25就可以了,二分终止的eps最好设到1e-5,否则会WA或者TLE. #include<cmath> #include<cstdio> #include<cstring> #include<…
传送门 要求的东西带个根号,这玩意叫几何平均数,说到平均数,我们就能想到算术平均数(就是一般意义下的平均数),而这个东西是一堆数之积开根号,所以如果每个数取对数,那么乘法会变成加法,开根号变成除法,所以我们只要最大化\(\frac{\sum_i ln_{a_i}}{c}\)就行了 这是一个分数规划的形式,首先二分最终答案\(mid\),然后我们要求最大答案,所以要检查\(\frac{\sum_i ln_{a_i}}{c}\)是否可以\(\ge mid\),可以改成\[\sum_i ln_{a_i…
原题传送门 题目让我们最大化\(val=\sqrt[k]{\prod_{i=1}^k w_i}\),其中\(k\)是咒语的个数,\(w_i\)是第\(i\)个咒语的神力 看着根号和累乘不爽,我们两边同取\(\ln\) \[\ln val=\frac{1}{k}\sum_{i=1}^k \ln w_i\] 易知当\(\ln val\)最大化时,\(val\)也最大化.所以我们将问题转化成了最大化\(\frac{1}{k}\sum_{i=1}^k \ln w_i\),我们发现这是算数平均数.我们珂以…
题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include<cstring> #include<algorithm> #define db double using namespace std; ,K=; ; ,c[N][K],fl[N]; db ans; ],nxt[N<<],vl[N],sm[N]; int l[N],v[N],dy[…
[BJOI2019]奥术神杖(分数规划,动态规划,AC自动机) 题面 洛谷 题解 首先乘法取\(log\)变加法,开\(c\)次根变成除\(c\). 于是问题等价于最大化\(\displaystyle \frac{\sum val_i}{c}\).典型的分数规划的形式. 二分权值\(k\),每个点的点权变成\(val_i-k\),转为求最值,那么直接在\(AC\)自动机上\(dp\)就行了. 注意精度问题. #include<iostream> #include<cstdio> #…
题目链接: [BJOI2019]奥术神杖 答案是$ans=\sqrt[c]{\prod_{i=1}^{c}v_{i}}=(\prod_{i=1}^{c}v_{i})^{\frac{1}{c}}$. 这样不大好求,我们将这个式子取$ln$,变成$ln\ ans=\frac{1}{c}\sum_{i=1}^{c}ln\ v_{i}$. 这显然是一个分数规划,每次二分一个答案$mid$,将每个串的权值都减去$mid$,那么只需要求最大价值是否大于$0$即可. 剩下的问题就是一个在$AC$自动机上的$D…
luoguP5319 [BJOI2019]奥术神杖(分数规划,AC自动机DP) Luogu 题解时间 难点在于式子转化,设有c个满足的子串,即求最大的 $ ans = \sqrt[c]{\prod_{ i = 1 }^{ c } w_{i} } $ . 取个对数变成 $ \ln Ans = \frac{1}{c} \sum_{ i = 1 } ^ { c } \ln w_{i} $ . 很明显是0/1分数规划. 二分mid倒腾一下式子变成 $ \sum_{ i = 1 }^{ c } ( \ln…
0/1分数规划问题,用二分解决!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include<iomanip> #include<cmath> #include<cstring> #define pi acos(-1.0) using namespace std; ],b[],an[]; int main() { int i,j,k,n; doubl…