最大半联通子图对应缩点后的$DAG$上的最长链 复杂度$O(n + m)$ #include <cstdio> #include <cstring> #include <iostream> using namespace std; extern inline char gc() { ], *S = RR + , *T = RR + ; , , stdin), S = RR; return *S ++; } inline int read() { , w = ; char…
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1093 缩点+拓扑,更新长度的时候维护方案数. 结果没想到处理缩点后的重边,这样的话方案数会算多. 学习人家处理重边的方法好好. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ,M=1e6+; int n,m,h…
http://www.lydsy.com/JudgeOnline/problem.php?id=1093 两个条件综合起来加上求最大的节点数,那么很明显如果是环一定要缩点. 然后再仔细思考下就是求dag的最长路的数目啦... 然后wa了... 看了题解...噗!第一次注意到缩点后会有重边QAQ...于是.. orz orz 然后思考了下怎么处理重边...很简单,每个点bfs时记录一下就行了.. #include <cstdio> #include <cstring> #includ…
[BZOJ1093][ZJOI2007]最大半联通子图(Tarjan,动态规划) 题面 BZOJ 洛谷 洛谷的讨论里面有一个好看得多的题面 题解 显然强连通分量对于题目是没有任何影响的,直接缩点就好了. 那么接下来剩下的是一个\(DAG\),既然任意两点之间都有一条路径连接,在\(DAG\)上的体现就是这个玩意一定是一条链.随便\(dp\)一下就好了. #include<iostream> #include<cstdio> #include<cstdlib> #incl…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点:原图的最大半联通子图实际是上是新DAG图的一个最长链 然后就像拓扑排序一样(不过这是以出度为0的点优先,拓扑排序以入度为0的点优先),设f[i]表示以节点i为起始节点的最长链的长度,s[i]表示以节点i为起始节点的最长链的条数,然后就DP一样搞…… 注意: 1.缩点的时候有可能有重边,要注意判断 2…
题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G’=(V’,E’)满足V’?V,E’是E中所有跟V’有关的边, 则称G’是G的一个导出子图.若G’是G的导出子图,且G’半连通,则称G’为G的半连通子图.若G’是G所有半连通子图 中包含节点数最多的,则称G’是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K ,以及不同的…
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图…
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,…
题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连…