当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释准确率并不是衡量模型好坏的唯一指标,同时我也会对其他衡量指标做出一些简单说明. 首先我们先要了解混淆矩阵(Confusion Matrix), 如下图,混淆矩阵经常被用来衡量一个分类模型在测试样本上的性能,本文提到的所有衡量标准都会用到下面混淆矩阵中出现的的四个值 真正例和真反例表示被正确预测的数据…
为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间内返回较全面和准确的信息,所以信息检索的评价指标通常从三个方面考虑:效率.效果和其他如数据规模. 下面简单介绍几种常用的信息检索评价指标: 1.准确率与召回率(Precision & Recall)        精度和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精…
Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negative),实际也为0(Truth-预测对了) FP: 预测为1(Positive),实际为0(False-预测错了) FN: 预测为0(Negative),实际为1(False-预测错了) 总的样本个数为:TP+TN+FP+FN. Accuracy/Precision/Recall的定义 Accura…
BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们定制的文本分类模型中(如text-CNN等).总之现在只要你的计算资源能满足,一般问题都可以用BERT来处理,此次针对公司的一个实际项目——一个多类别(61类)的文本分类问题,其就取得了很好的结果. 我们此次的任务是一个数据分布极度不平衡的多类别文本分类(有的类别下只有几个或者十几个样本,有的类别下…
一.ROC,AUC ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣 . ROC曲线一般的横轴是FPR,纵轴是FPR.AUC为曲线下面的面积,作为评估指标,AUC值越大,说明模型越好.如下图: 二.Precision.Recall.F1-score Terminology and derivationsfrom a confusion matrix true positive (TP)…
一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图:  第一个参数true,false是指预测的正确性.  第二个参数true,postitives是指预测的结果.  相关公式: 检测正列的效果: 检测负列的效果: 公式解释: fp_rate: tp_rate: recall:(召回率) 值越大越好 presssion:(准确率) TP:本来是正例,通过模型预测出来是正列 TP+FP:通过模型预测出来的所有正列数(其中包括本来…
混淆矩阵 精准率/查准率,presicion 预测为正的样本中实际为正的概率 召回率/查全率,recall 实际为正的样本中被预测为正的概率 TPR F1分数,同时考虑查准率和查全率,二者达到平衡,=2*查准率*查全率/(查准率+查全率) 真正率 = 灵敏度 sensitivity 召回率 TP/TP+FN ,只关注正样本中有多少被准确预测 假正率 = 1- 特异度 = FP/(FP+TN),有多少负样本被错误预测   在正负样本足够的情况下,可以用ROC曲线.AUC.KS评价模型区分能力和排序…
tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义,需要在整个验证集上计算,而 tf.keras 在训练过程中计算 acc.loss 都是一个 batch 计算一次的,最后再平均起来.Keras 2.0 版本将 precision, recall, fbeta_score, fmeasure 等 metrics 移除了. 虽然 tf.keras.me…
1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False Negative 如何理解记忆这四个概念定义呢? 举个简单的二元分类问题 例子: 假设,我们要对某一封邮件做出一个判定,判定这封邮件是垃圾邮件.还是这封邮件不是垃圾邮件? 如果判定是垃圾邮件,那就是做出(Positive)的判定: 如果判定不是垃圾邮件,那就做出(Negative)的判定. Tru…
针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy   真实结果 1 0 预测结果 1 TP(真阳性)  FP(假阳性) 0 FN(假阴性) TN(真阴性) TP(True Positive):预测结果为正类,实际上就是正类 FP(False Positive):预测结果为正类,实际上是反类 FN(False negative):预测结果为反类,实际上是正类 TN(…