tensorflow 模型保存】的更多相关文章

TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
TensorFlow模型保存和加载方法 模型保存 import tensorflow as tf w1 = tf.Variable(tf.constant(2.0, shape=[1]), name="w1-name") w2 = tf.Variable(tf.constant(3.0, shape=[1]), name="w2-name") a = tf.placeholder(dtype=tf.float32, name="a-name")…
一.TensorFlow模型保存和提取方法 1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,saver.save(sess,"Model/model.ckpt"),实际在这个文件目录下会生成4个人文件: checkpoint文件保存了一个录下多有的模型文件列表,model.ckpt.meta保存了TensorFlow计算图的结构信息,model.…
我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来.tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.joblib的dump与load方法就可以保存与载入使用.而tensorflow由于有graph, operation 这些概念,保存与载入模型稍显麻烦. 一.基本方法 网上搜索tensorflow模型保存,搜到的大多是基本的方法.即 保存 定义变量 使用saver.save()方法保存 载入 定义变量 使…
在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,如:saver.save(sess, "/Model/model"), 执行完,在相应的目录下将会有4个文件: meta:文件保存的是图结构信息,meta文件是pb(protocol b…
我们的模型训练出来想给别人用,或者是我今天训练不完,明天想接着训练,怎么办?这就需要模型的保存与读取.看代码: import tensorflow as tf import numpy as np import os #输入数据 x_data = np.linspace(-1,1,300)[:, np.newaxis] noise = np.random.normal(0,0.05, x_data.shape) y_data = np.square(x_data)-0.5+noise #输入层…
该文章转自https://blog.csdn.net/sinat_34474705/article/details/78995196 我在进行图像识别使用ckpt文件预测的时候,这个文章给我提供了极大的帮助,因此我决定把它记录下来. 原文链接A quick complete tutorial to save and restore Tensorflow models–by ANKIT SACHAN (英文水平有限,有翻译不当的地方请见谅) 在本教程中,我将介绍: - tensorflow模型是什…
使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.in…
import tensorflow as tf #保存模型 saver = tf.train.Saver() saver.save(sess, "e://code//python//test//package_test//model.ckpt", global_step=step) #加载读取模型 with tf.Session() as sess: new_saver=tf.train.import_meta_graph('checkout\\model.ckpt-3500.meta…
1.首先 saver = tf.train.Saver(max_to_keep=1)新建一个saver,max_to_keep是说只保留最后一轮的训练结果 2.使用save方法保存模型 saver.save(sess,"./model_test/"+"CNN_model_test.ckpt") 然后会在./model_test文件夹下生成这么四个文件: meta文件保存的是图结构,meta文件是pb(protocol buffer)格式文件,包含变量.op.集合等.…
在TensorFlow中,保存模型与加载模型所用到的是tf.train.Saver()这个类.我们一般的想法就是,保存模型之后,在另外的文件中重新将模型导入,我可以利用模型中的operation和variable来测试新的数据. 什么是TensorFlow中的模型 首先,我们先来理解一下TensorFlow里面的模型是什么.在保存模型后,一般会出现下面四个文件: meta graph:保存了TensorFlow的graph.包括all variables,operations,collectio…
TypeError: TF_SessionRun_wrapper: expected all values in input dict to be ndarray 对于下面的实际代码: import tensorflow as tf import os os.environ[' def myregression(): with tf.variable_scope("data"): x = tf.random_normal([100, 1], mean=1.75, stddev=0.5)…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #定义两…
在Tensorflow中,有两种保存模型的方法:一种是Checkpoint,另一种是Protobuf,也就是PB格式: 一. Checkpoint方法: 1.保存时使用方法: tf.train.Saver() 生成四个文件: checkpoint                 检查点文件 model.ckpt.data-xxx 参数值 model.ckpt.index 各个参数 model.ckpt.meta 图的结构 2.恢复时使用方法: saver.restore() :模型文件依赖Ten…
使用 tf.train.Saver 保存:tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta', write_meta_graph=True, write_state=True) 加载:tf.train.Saver.restore(sess,save_path) 步骤为:定义输入 placeholder 定义graph 定义 loss 定义 opt…
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import tensorflow as tf # 用 tf.session.run() 里 feed_dict 参数设置占位 tensor, 如果传入 feed_dict的数据与 tensor 类型不符,就无法被正确处理 x = tf.placeholder(tf.string) y = tf.placehol…
参考: TensorFlow 自定义模型导出:将 .ckpt 格式转化为 .pb 格式 TensorFlow 模型保存与恢复 snpe tensorflow 模型前向传播 保存ckpt  tensorbard查看 ckpt转pb  pb 转snpe dlc 实例 log文件 输入节点 图像高度 图像宽度 图像通道数 input0 6,6,3 输出节点 --out_node add snpe-tensorflow-to-dlc --graph ./simple_snpe_log/model200.…
一.sklearn模型保存与读取 1.保存 from sklearn.externals import joblib from sklearn import svm X = [[0, 0], [1, 1]] y = [0, 1] clf = svm.SVC() clf.fit(X, y) joblib.dump(clf, "train_model.m") 2.读取 clf = joblib.load("train_model.m") clf.predit([0,0]…
模型文件 tensorflow 训练保存的模型注意包含两个部分:网络结构和参数值. .meta .meta 文件以 “protocol buffer”格式保存了整个模型的结构图,模型上定义的操作等信息. 查看 meta 文件中所有的操作信息: # ================================================================ # # 列出 meta 中所有操作 # # =======================================…
先上代码: from __future__ import absolute_import from __future__ import division from __future__ import print_function # -*- coding: utf-8 -*- """ Created on Tue Nov 14 20:34:00 2017 @author: HJL """ # Copyright 2015 The TensorFl…
翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ 在这篇tensorflow教程中,我会解释: 1) Tensorflow的模型(model)长什么样子? 2) 如何保存tensorflow的模型? 3) 如何恢复一个tensorflow模型来用于预测或者迁移学习? 4) 如何使用预训练好的模型(imported pretrained model…
1.tensorflow中模型的保存 创建tf.train.saver,使用saver进行保存: saver = tf.train.Saver() saver.save(sess, './trained_variables.ckpt', global_step=1000) 1.1.在保存时需要注意参数在创建时需要传入name参数,读取参数时凭借name属性读取. def weight_variable(shape, name): initial = tf.truncated_normal(sha…
  TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model Checkmate is designed to be a simple drop-in solution for a very common Tensorflow use-case: keeping track of the best model checkpoints during training. The BestCheckpointSaver is a wrapper ar…
1.保存 将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver() 在创建这个Saver对象的时候,有一个参数经常会用到,max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型.如果想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,但是这样…
模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分为两个文件,一个是.data-00000-of-00001 文件,一个是 .index 文件 checkpoint文件:文本文件,记录了最新保持的5个模型文件列表 tf中模型保存使用 tf.train.Saver类来保存模型.使用方式: 1. 在Session外生成一个模型保存对象 saver =…
Tensorflow:模型变量保存 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 python3.5.0 Tensorflow常用保存模型方法 import tensorflow as tf saver = tf.train.Saver() # 创建保存器 with tf.Session() as sess: saver.save(sess,"/path/model.ckpt"…
模型保存与恢复.自定义命令行参数. 在我们训练或者测试过程中,总会遇到需要保存训练完成的模型,然后从中恢复继续我们的测试或者其它使用.模型的保存和恢复也是通过tf.train.Saver类去实现,它主要通过将Saver类添加OPS保存和恢复变量到checkpoint.它还提供了运行这些操作的便利方法. tf.train.Saver(var_list=None, reshape=False, sharded=False, max_to_keep=5, keep_checkpoint_every_n…
模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分为两个文件,一个是.data-00000-of-00001 文件,一个是 .index 文件 checkpoint文件:文本文件,记录了最新保持的5个模型文件列表 tf中模型保存使用 tf.train.Saver类来保存模型.使用方式: 1. 在Session外生成一个模型保存对象 saver =…
将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver() 在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型.如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,如:…
1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: 这是一个协议缓冲区(protocol buffer),它完整地保存了Tensorflow图:即所有的变量.操作.集合等.此文件以 .meta 为拓展名. b) Checkpoint 文件: 这是一个二进制文件,包含weights.biases.gradients 和其他所有变量的值.此文件以 .ck…