Spark性能优化(一)】的更多相关文章

前言 数据倾斜调优 调优概述 数据倾斜发生时的现象 数据倾斜发生的原理 如何定位导致数据倾斜的代码 查看导致数据倾斜的key的数据分布情况 数据倾斜的解决方案 解决方案一:使用Hive ETL预处理数据 解决方案二:过滤少数导致倾斜的key 解决方案三:提高shuffle操作的并行度 解决方案四:两阶段聚合(局部聚合+全局聚合) 解决方案五:将reduce join转为map join 解决方案六:采样倾斜key并分拆join操作 解决方案七:使用随机前缀和扩容RDD进行join 解决方案八:多…
转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行…
http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236eb1cb4f7374387a235&scene=0#rd [技术博客]Spark性能优化指南——高级篇 2016-05-13 李雪蕤 美团技术团队 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调…
http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a64bdbb25c51508dfc&scene=2&srcid=0519iChOETxAx0OeGoHnm7Xk&from=timeline&isappinstalled=0#rd Spark性能优化指南——基础篇 2016-05-18 优才网 前言 在大数据计算领域,Spar…
前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能. 数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别task执行极慢.比如…
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spar…
转自https://tech.meituan.com/spark-tuning-pro.html,感谢原作者的贡献 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问…
本文转自:http://tech.meituan.com/spark-tuning-basic.html 感谢原作者 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算…
本文转载自:https://tech.meituan.com/spark-tuning-pro.html 美团技术点评团队) Spark性能优化指南——高级篇 李雪蕤 ·2016-05-12 14:47 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spa…
Spark性能优化的10大问题及其解决方案 问题1:reduce task数目不合适解决方式:需根据实际情况调节默认配置,调整方式是修改参数spark.default.parallelism.通常,reduce数目设置为core数目的2到3倍.数量太大,造成很多小任务,增加启动任务的开销:数目太少,任务运行缓慢. 问题2:shuffle磁盘IO时间长解决方式:设置spark.local.dir为多个磁盘,并设置磁盘为IO速度快的磁盘,通过增加IO来优化shuffle性能: 问题3:map|red…
资源调优 调优概述 在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对S…
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spark作业进行合理的调优,Spark作业的执行速度可能会很慢,这样就…
前言 继<Spark性能优化:开发调优篇>和<Spark性能优化:资源调优篇>讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 1.数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业…
序列化 背景: 在以下过程中,需要对数据进行序列化: shuffling data时需要通过网络传输数据 RDD序列化到磁盘时 性能优化点: Spark默认的序列化类型是Java序列化.Java序列化的优势是兼容性好,不需要自已注册类.劣势是性能差.为提升性能,建议使用Kryo序列化替代默认的Java序列化.Kryo序列化的优势是速度快,体积小,劣势是兼容性差,需要自已注册类. 序列化的配置项:spark.serializer 使用方法1 1 2 3 val conf = new SparkCo…
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spar…
Spark性能优化的10大问题及其解决方案 问题1:reduce task数目不合适 解决方式: 需根据实际情况调节默认配置,调整方式是修改参数spark.default.parallelism.通常,reduce数目设置为core数目的2到3倍.数量太大,造成很多小任务,增加启动任务的开销:数目太少,任务运行缓慢. 问题2:shuffle磁盘IO时间长 解决方式: 设置spark.local.dir为多个磁盘,并设置磁盘为IO速度快的磁盘,通过增加IO来优化shuffle性能: 问题3:map…
前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行原理 资源参数调优 写在最后的话 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的…
1.前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Sp…
https://www.jianshu.com/p/b8841a8925fb spark性能优化 1.诊断内存的消耗 2. 高性能序列化类库 3. 优化数据结构 4. 对多次使用的rdd进行持久化或者checkpoint 5. 使用序列化的持久化级别 6. java虚拟机垃圾回收调优 7. 提高并行度 8. 广播共享数据 9. 数据本地化 10. reducebykey和groupbykey 11. shuffle性能调优…
Spark性能优化指南-高级篇(spark shuffle) 非常好的讲解…
[转]Spark性能优化指南——基础篇 http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a64bdbb25c51508dfc&scene=2&srcid=0519iChOETxAx0OeGoHnm7Xk&from=timeline&isappinstalled=0#rd Spark性能优化指南——基础篇 优才网 2016-05…
原文来我的公众号:Spark性能优化指南——初级篇 一. Spark作业原理 我们使用spark-submit提交一个Spark作业之后,这个作业就会启动一个对应的Driver进程.该进程是向集群管理器(Yarn,K8s)申请运行Spark作业需要使用的资源,这里的资源指的就是Executor进程. YARN集群管理器会根据我们为Spark作业设置的资源参数,在各个工作节点上,启动一定数量的Executor进程,每个Executor进程都占有一定数量的内存和CPU core. 在申请到了作业执行…
Task优化:    1.慢任务的性能优化:可以考虑减少每个Partition处理的数据量,同时建议开启spark.speculation(慢任务推导,当检测的慢任务时,会同步开启相同的新任务,谁先完成就认定该任务完成). 2.尽量减少Shuffle,例如我们要尽量减少groupByKey的操作,因为groupByKey会要求通过网络拷贝(Shuffle)所有的数据,优先考虑使用reduceByKey.因为reduceByKey会首先reduce locally.例如在进行join操作的时候,形…
第一章 Spark 性能调优 1.1 常规性能调优 1.1.1 常规性能调优一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略. 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示: 代码清单2-1 标准Spark提交脚本 /usr/opt/modules/spark/bin/spark-submit \ --…
广播变量 背景 一般Task大小超过10K时(Spark官方建议是20K),需要考虑使用广播变量进行优化.大表小表Join,小表使用广播的方式,减少Join操作. 参考:Spark广播变量与累加器 Local Dir 背景 shuffle过程中,临时数据需要写入本地磁盘.本地磁盘的临时目录通过参数spark.local.dir配置. 性能优化点 spark.local.dir支持配置多个目录.配置spark.local.dir有多个目录,每个目录对应不同的磁盘,这样可以提升IO效率.另外,可以采…
一.技术背景 Spark1.x版本中执行SQL语句,使用的是一种最经典,最流行的查询求职策略,该策略主要基于 Volcano Iterator Model(火山迭代模型).一个查询会包含多个Operator,每个Operator都会实现一个接口,提供一个next()方法,该方法返回Operator Tree的下一个Operator,能够让查询引擎组装任意Operator,而不需要去考虑每个Operator具体的处理逻辑,所以Volcano Iterator Model 才成为了20年中SQL执行…
Spark的性能分析和调优很有意思,今天再写一篇.主要话题是shuffle,当然也牵涉一些其他代码上的小把戏. 以前写过一篇文章,比较了几种不同场景的性能优化,包括portal的性能优化,web service的性能优化,还有Spark job的性能优化.Spark的性能优化有一些特殊的地方,比如实时性一般不在考虑范围之内,通常我们用Spark来处理的数据,都是要求异步得到结果的数据:再比如数据量一般都很大,要不然也没有必要在集群上操纵这么一个大家伙,等等.事实上,我们都知道没有银弹,但是每一种…
版本:V2.0 第一章       Spark 性能调优 1.1      常规性能调优 1.1.1   常规性能调优一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略. 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示: 代码清单2-1 标准Spark提交脚本 /usr/opt/modules/spark/…
本文内容说明 初始化配置给rdd和dataframe带来的影响 repartition的相关说明 cache&persist的相关说明 性能优化的说明建议以及实例 配置说明 spark:2.4.0 服务器:5台(8核32G) 初始化配置项 %%init_spark launcher.master = "yarn" launcher.conf.spark.app.name = "BDP-xw" launcher.conf.spark.driver.cores…
  在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资…